Skip to main content
Log in

Voltage-gated and stretch-activated potassium channels in the human heart

Pathophysiological and clinical significance

Spannungsabhängige und dehnungssensitive Kaliumkanäle im menschlichen Herzen

Pathophysiologische und klinische Signifikanz

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

Ion channels are essential for electrical signaling and contractility in cardiomyocytes. Detailed knowledge about the molecular function and regulation of cardiac ion channels is crucial for understanding cardiac physiology and pathophysiology especially in the field of arrhythmias. This review aims at providing a general overview on the identity, functional characteristics, and roles of voltage-gated as well as stretch-activated potassium selective channels in the heart. In particular, we will highlight potential therapeutic targets as well as the emerging fields of future investigations.

Zusammenfassung

Ionenkanäle sind essenziell für die elektrische und mechanische Aktivität von Kardiomyozyten. Entscheidend für ein detailliertes kausales Verständnis der kardialen Physiologie und Pathophysiologie von Arrhythmien ist die Erforschung der zugrundeliegenden molekularen Funktionen und Regulationsmechanismen kardialer Ionenkanäle. Dieser Übersichtsartikel fasst neuere Erkenntnisse über Identität, funktionelle Charakteristika und Bedeutung von spannungsabhängigen und dehnungssensitiven Kaliumkanälen des Herzens zusammen. Dabei sollen besonders neue therapeutische Angriffspunkte und zukünftige Forschungsrichtungen herausgestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 74:245–269

    Article  CAS  PubMed  Google Scholar 

  2. Arnadottir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39:111–137

    Article  CAS  PubMed  Google Scholar 

  3. Bagriantsev SN, Ang KH, Gallardo-Godoy A et al (2013) A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. Acs Chem Biol 8:1841–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baumgarten CM, Clemo HF (2003) Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 82:25–42

    Article  CAS  PubMed  Google Scholar 

  5. Blin S, Soussia IB, Kim E‑J et al (2016) Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties. Proc Natl Acad Sci USA 113:4200–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boycott HE, Barbier CS, Eichel CA et al (2013) Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci USA 110:E3955–E3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brohawn SG, Del Marmol J, Mackinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Jong AM, Maass AH, Oberdorf-Maass SU et al (2010) Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res 89:754–765

    Article  PubMed  Google Scholar 

  9. Decher N, Kiper AK, Rinné S (2017) Stretch-activated potassium currents in the heart: focus on TREK-1 and arrhythmias. Prog Biophys Mol Biol. https://doi.org/10.1016/j.pbiomolbio.2017.05.005

    PubMed  Google Scholar 

  10. Decher N, Ortiz-Bonnin B, Friedrich C et al (2017) Sodium permeable and “hypersensitive” TREK-1 channels cause ventricular tachycardia. EMBO Mol Med 9(4):403–414. https://doi.org/10.15252/emmm.201606690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong YY, Pike AC, Mackenzie A et al (2015) K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with prozac. Science 347:1256–1259

    Article  CAS  PubMed  Google Scholar 

  12. Drin G, Antonny B (2010) Amphipathic helices and membrane curvature. FEBS Lett 584:1840–1847

    Article  CAS  PubMed  Google Scholar 

  13. Ford JW, Milnes JT (2008) New drugs targeting the cardiac ultra-rapid delayed-rectifier current (IKur): rationale, pharmacology and evidence for potential therapeutic value. J Cardiovasc Pharmacol 52:105–120

    Article  CAS  PubMed  Google Scholar 

  14. Friedrich O, Wagner S, Battle AR et al (2012) Mechano-regulation of the beating heart at the cellular level—Mechanosensitive channels in normal and diseased heart. Prog Biophys Mol Biol 110:226–238

    Article  CAS  PubMed  Google Scholar 

  15. Glasscock E, Voigt N, Mccauley MD et al (2015) Expression and function of Kv1. 1 potassium channels in human atria from patients with atrial fibrillation. Basic Res Cardiol 110:1–15

    Article  CAS  Google Scholar 

  16. Goonetilleke L, Quayle J (2012) TREK-1 K+ channels in the cardiovascular system: their significance and potential as a therapeutic target. Cardiovasc Ther 30:e23–e29

    Article  CAS  PubMed  Google Scholar 

  17. Grashoff C, Hoffman BD, Brenner MD et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guéguinou M, Chantôme A, Fromont G et al (2014) KCa and Ca 2+ channels: the complex thought. Biochim Biophys Acta 1843:2322–2333

    Article  PubMed  Google Scholar 

  19. Guo J, Sachs F, Meng F (2014) Fluorescence-based force/tension sensors: a novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid Redox Signal 20:986–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo W, Li H, Aimond F et al (2002) Role of heteromultimers in the generation of myocardial transient outward K+ currents. Circ Res 90:586–593

    Article  CAS  PubMed  Google Scholar 

  21. Gurney A, Manoury B (2009) Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38:305–318

    Article  CAS  PubMed  Google Scholar 

  22. Honoré E, Patel A (2011) The mechano—gated K2p channel TREK-1 in the cardiovascular system. In: Kohl P, Sachs F, Franz MR (eds) Cardiac mechano-electric coupling and arrhythmias. Oxford University Press, Oxford, pp 19–26

    Chapter  Google Scholar 

  23. Innamaa A, Jackson L, Asher V et al (2013) Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer. Clin Transl Oncol 15:910–918

    Article  CAS  PubMed  Google Scholar 

  24. Iribe G, Jin H, Kaihara K et al (2010) Effects of axial stretch on sarcolemmal BKCa channels in post-hatch chick ventricular myocytes. Exp Physiol 95:699–711

    Article  CAS  PubMed  Google Scholar 

  25. Jousset F, Maguy A, Rohr S et al (2016) Myofibroblasts electrotonically coupled to cardiomyocytes alter conduction: insights at the cellular level from a detailed in silico tissue structure model. Front Physiol 7:496

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kelly D, Mackenzie L, Hunter P et al (2006) Gene expression of stretch-activated channels and mechanoelectric feedback in the heart. Clin Exp Pharmacol Physiol 33:642–648

    Article  CAS  PubMed  Google Scholar 

  27. Kohl P, Bollensdorff C, Garny A (2006) Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol 91:307–321

    Article  PubMed  Google Scholar 

  28. Krapivinsky G, Gordon E, Wickman K et al (1995) The G‑protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374:135–141

    Article  CAS  PubMed  Google Scholar 

  29. Levitz J, Royal P, Comoglio Y et al (2016) Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels. Proc Natl Acad Sci USA 113:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li N, Timofeyev V, Tuteja D et al (2009) Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 587:1087–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Medhurst AD, Rennie G, Chapman CG et al (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86:101–114

    Article  CAS  PubMed  Google Scholar 

  32. Park K‑S, Han MH, Jang HK et al (2013) The TREK2 channel is involved in the proliferation of 253J cell, a human bladder carcinoma cell. Korean J Physiol Pharmacol 17:511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–346

    Article  CAS  PubMed  Google Scholar 

  34. Patel AJ, Honore E, Lesage F et al (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  CAS  PubMed  Google Scholar 

  35. Peyronnet R, Nerbonne JM, Kohl P (2016) Cardiac mechano-gated ion channels and arrhythmias. Circ Res 118:311–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quinn TA, Camelliti P, Rog-Zielinska EA et al (2016) Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc Natl Acad Sci USA 113:14852–14857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ranade SS, Syeda R, Patapoutian A (2015) Mechanically activated ion channels. Neuron 87:1162–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ravens U (2017) Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation? Can J Physiol Pharmacol 95:1313–1318

    Article  CAS  PubMed  Google Scholar 

  39. Ravens U, Odening KE (2017) Atrial fibrillation: therapeutic potential of atrial K+ channel blockers. Pharmacol Ther 176:13–21

    Article  CAS  PubMed  Google Scholar 

  40. Retailleau K, Duprat F, Arhatte M et al (2015) Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep 13:1161–1171

    Article  CAS  PubMed  Google Scholar 

  41. Sachs F (2010) Stretch-activated ion channels: what are they? Physiology (Bethesda) 25:50–56

    CAS  Google Scholar 

  42. Sandoz G, Douguet D, Chatelain F et al (2009) Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc Natl Acad Sci USA 106:14628–14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidt C, Wiedmann F, Langer C et al (2014) Cloning, functional characterization, and remodeling of K 2P 3.1 (TASK-1) potassium channels in a porcine model of atrial fibrillation and heart failure. Heart Rhythm 11:1798–1805

    Article  PubMed  Google Scholar 

  44. Schmidt C, Wiedmann F, Schweizer PA et al (2013) Class I antiarrhythmic drugs inhibit human cardiac two-pore-domain K+(K 2P) channels. Eur J Pharmacol 721:237–248

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt C, Wiedmann F, Schweizer PA et al (2012) Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels. Naunyn Schmiedebergs Arch Pharmacol 385:1003–1016

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt C, Wiedmann F, Schweizer PA et al (2014) Inhibition of cardiac two-pore-domain K+(K 2P) channels—an emerging antiarrhythmic concept. Eur J Pharmacol 738:250–255

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt C, Wiedmann F, Tristram F et al (2014) Cardiac expression and atrial fibrillation-associated remodeling of K(2)p2.1 (TREK-1) K(+) channels in a porcine model. Life Sci 97:107–115

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt C, Wiedmann F, Voigt N et al (2015) Upregulation of K 2P 3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation 132(2):82–92. https://doi.org/10.1161/CIRCULATIONAHA.114.012657

    Article  CAS  PubMed  Google Scholar 

  49. Schmidt C, Wiedmann F, Zhou X‑B et al (2017) Inverse remodelling of K2P3. 1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy. Eur Heart J 38:1764–1774

    PubMed  Google Scholar 

  50. Schumacher MA, Rivard AF, Bachinger HP et al (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–1125

    Article  CAS  PubMed  Google Scholar 

  51. Skibsbye L, Poulet C, Diness JG et al (2014) Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc Res 103:156–167

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi K, Kakimoto Y, Toda K et al (2013) Mechanobiology in cardiac physiology and diseases. J Cell Mol Med 17:225–232

    Article  PubMed  PubMed Central  Google Scholar 

  53. Teng J, Loukin S, Anishkin A et al (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27–37

    Article  CAS  PubMed  Google Scholar 

  54. Van Wagoner DR (1993) Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 72:973–983

    Article  PubMed  Google Scholar 

  55. Voigt N, Rozmaritsa N, Trausch A et al (2010) Inhibition of IK, ACh current may contribute to clinical efficacy of class I and class III antiarrhythmic drugs in patients with atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 381:251–259

    Article  CAS  PubMed  Google Scholar 

  56. Volkers L, Mechioukhi Y, Coste B (2015) Piezo channels: from structure to function. Pflugers Arch 467:95–99

    Article  CAS  PubMed  Google Scholar 

  57. Voloshyna I, Besana A, Castillo M et al (2008) TREK-1 is a novel molecular target in prostate cancer. Cancer Res 68:1197–1203

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Liu Y, Deberg HA et al (2014) Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. Elife 3:e1834

    PubMed  PubMed Central  Google Scholar 

  59. Wiedmann F, Schmidt C, Lugenbiel P et al (2016) Therapeutic targeting of two-pore-domain potassium (K 2P) channels in the cardiovascular system. Clin Sci 130:643–650

    Article  CAS  PubMed  Google Scholar 

  60. Yu T, Deng C, Wu R et al (2012) Decreased expression of small-conductance Ca 2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. Life Sci 90:219–227

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by research grants from the University of Heidelberg, Faculty of Medicine (Rahel Goitein-Straus Scholarship and Olympia-Morata Scholarship to C.S.), from the DZHK (German Center for Cardiovascular Research; Excellence Grant to C.S.), from the German Heart Foundation/German Foundation of Heart Research (F/41/15 to C.S.), from the Institute for Experimental Cardiovascular Medicine to RP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Peyronnet.

Ethics declarations

Conflict of interest

C. Schmidt and R. Peyronnet declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, C., Peyronnet, R. Voltage-gated and stretch-activated potassium channels in the human heart. Herzschr Elektrophys 29, 36–42 (2018). https://doi.org/10.1007/s00399-017-0541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-017-0541-z

Keywords

Schlüsselwörter

Navigation