Skip to main content
Log in

Two-pore potassium channels in the cardiovascular system

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Two-pore domain (K2P) channels emerged about a decade ago and since then have been an expanding area of interest. This is because their biophysical and pharmacological properties make them good candidates to support background potassium currents and membrane potential in many cell types. There is clear evidence for TREK-1 and TASK-1 in the heart and these channels are likely to regulate cardiac action potential duration through their regulation by stretch, polyunsaturated fatty acids, pH, and neurotransmitters. TREK-1 may also have a critical role in mediating the vasodilator response of resistance arteries to polyunsaturated fatty acids, thus contributing to their protective effect on the cardiovascular system. TASK-1, on the other hand, is a strong candidate for a role in hypoxic vasoconstriction of pulmonary arteries. Many other members of the K2P channel family have been identified in the cardiovascular system, although their functional roles are still to be demonstrated. This review provides an up to date summary of what is known about the involvement of members of the K2P channel family in cells of the heart and arterial circulation. Our knowledge of their roles will improve with the rapidly increasing interest in them and as new selective pharmacological tools emerge. As their physiological roles emerge, the K2P family of potassium channels may offer promising therapeutic solutions to target cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ALA:

α-Linolenic acid

EET:

Epoxyeicosatrienoic

ETYA:

5,8,11,14-Eicosatetraynoic acid

GPCR:

G-protein coupled receptor

HPV:

Hypoxic pulmonary vasconstriction

MAPK:

Mitogen-activated protein kinase

l-NNA:

NG-nitro-l-arginine

PASMC:

Pulmonary artery smooth muscle cell

PIP2 :

Phosphatidylinositol 4,5 biphosphate

PKC:

Protein kinase C

PUFA:

Polyunsaturated fatty acid

TMD:

Transmembrane domains

VGCC:

Voltage-gated calcium channels

References

  • Aimond F, Rauzier JM, Bony C, Vassort G (2000) Simultaneous activation of p38 MAPK and p42/44 MAPK by ATP stimulates the K+ current ITREK in cardiomyocytes. J Biol Chem 275:39110–39116

    Article  PubMed  CAS  Google Scholar 

  • Aller MI, Veale EL, Linden AM, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG (2005) Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurones. J Neurosci 25:11455–11467

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hashimoto K, Campbell WB, Falck JR, Michelakis ED (2003) Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKCa channels. Circulation 107:769–776

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, Michelakis ED (2001) Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J 15:1801–1803

    PubMed  CAS  Google Scholar 

  • Archer SL, Wu XC, Thebaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, Michelakis ED (2004) Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res 95:308–318

    Article  PubMed  CAS  Google Scholar 

  • Backx PH, Marban E (1993) Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ Res 72:890–900

    PubMed  CAS  Google Scholar 

  • Barbuti A, Ishii S, Shimizu T, Robinson RB, Feinmark SJ (2002) Block of the background K+ channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor. Am J Physiol Heart Circ Physiol 282:H2024–H2030

    PubMed  CAS  Google Scholar 

  • Berg AP, Talley EM, Manger JP, Bayliss DA (2004) Motoneurones express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 24:6693–6702

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci 23:11681–11691

    PubMed  CAS  Google Scholar 

  • Blondeau N, Petrault O, Manta S, Giordanengo V, Gounon P, Bordet R, Lazdunski M, Heurteaux C (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101:176–184

    Article  PubMed  CAS  Google Scholar 

  • Brickley SG, Aller MI, Sandu C, Veale EL, Alder FG, Sambi H, Mathie A, Wisden W (2007) TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurones. J Neurosci 27:9329–9340

    Article  PubMed  CAS  Google Scholar 

  • Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92

    Article  PubMed  CAS  Google Scholar 

  • Bryan RM Jr, Joseph BK, Lloyd E, Rusch NJ (2007) Starring TREK-1: the next generation of vascular K+ channels. Circ Res 101:119–121

    Article  PubMed  Google Scholar 

  • Bryan RM Jr, You J, Phillips SC, Andresen JJ, Lloyd EE, Rogers PA, Dryer SE, Marrelli SP (2006) Evidence for two-pore domain potassium channels in rat cerebral arteries. Am J Physiol Heart Circ Physiol 291:H770–H780

    Article  PubMed  CAS  Google Scholar 

  • Buckler KJ, Honore E (2005) The lipid-activated two-pore domain K+ channel TREK-1 is resistant to hypoxia: implication for ischaemic neuroprotection. J Physiol 562:213–222

    Article  PubMed  CAS  Google Scholar 

  • Buckler KJ, Williams BA, Honore E (2000) An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 525(Pt 1):135–142

    Article  PubMed  CAS  Google Scholar 

  • Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380

    Article  PubMed  CAS  Google Scholar 

  • Byrne BM, Howard RB, Morrow RJ, Whiteley KJ, Adamson SL (1997) Role of the l-arginine nitric oxide pathway in hypoxic fetoplacental vasoconstriction. Placenta 18:627–634

    Article  PubMed  CAS  Google Scholar 

  • Campanucci VA, Fearon IM, Nurse CA (2003) A novel O2-sensing mechanism in rat glossopharyngeal neurones mediated by a halothane-inhibitable background K+ conductance. J Physiol 548:731–743

    Article  PubMed  CAS  Google Scholar 

  • Campbell WB, Falck JR (2007) Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension 49:590–596

    Article  PubMed  CAS  Google Scholar 

  • Campbell WB, Gebremedhin D, Pratt PF, Harder DR (1996) Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 78:415–423

    PubMed  CAS  Google Scholar 

  • Carmeliet E (1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017

    PubMed  CAS  Google Scholar 

  • Casteels R, Kitamura K, Kuriyama H, Suzuki H (1977) The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J Physiol 271:41–61

    PubMed  CAS  Google Scholar 

  • Charpentier F (2007) Understanding the cardiac role of K2P channels: a new TASK for electrophysiologists. Cardiovasc Res 75:5–6

    Article  PubMed  CAS  Google Scholar 

  • Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honore E (2005) A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 24:44–53

    Article  PubMed  CAS  Google Scholar 

  • Chen TT, Luykenaar KD, Walsh EJ, Walsh MP, Cole WC (2006) Key role of Kv1 channels in vasoregulation. Circ Res 99:53–60

    Article  PubMed  CAS  Google Scholar 

  • Choisy SC, Hancox JC, Arberry LA, Reynolds AM, Shattock MJ, James AF (2004) Evidence for a novel K+ channel modulated by α1A-adrenoceptors in cardiac myocytes. Mol Pharmacol 66:735–748

    Article  PubMed  CAS  Google Scholar 

  • Clarke CE, Veale EL, Green PJ, Meadows HJ, Mathie A (2004) Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc. J Physiol 560:51–62

    Article  PubMed  CAS  Google Scholar 

  • Cole WC, Chen TT, Clement-Chomienne O (2005) Myogenic regulation of arterial diameter: role of potassium channels with a focus on delayed rectifier potassium current. Can J Physiol Pharmacol 83:755–765

    Article  PubMed  CAS  Google Scholar 

  • Cox RH, Rusch NJ (2002) New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure. Microcirculation 9:243–257

    Article  PubMed  CAS  Google Scholar 

  • Czirjak G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277:5426–5432

    Article  PubMed  CAS  Google Scholar 

  • Davies LA, Hu C, Guagliardo NA, Sen N, Chen X, Talley EM, Carey RM, Bayliss DA, Barrett PQ (2008) TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci USA 105:2203–2208

    Article  PubMed  CAS  Google Scholar 

  • Duprat F, Girard C, Jarretou G, Lazdunski M (2005) Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J Physiol 562:235–244

    Article  PubMed  CAS  Google Scholar 

  • Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471

    Article  PubMed  CAS  Google Scholar 

  • Evans AM, Osipenko ON, Gurney AM (1996) Properties of a novel K+ current that is active at resting potential in rabbit pulmonary artery smooth muscle cells. J Physiol 496(Pt 2):407–420

    PubMed  CAS  Google Scholar 

  • Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 17:3297–3308

    Article  PubMed  CAS  Google Scholar 

  • Gardener MJ, Johnson IT, Burnham MP, Edwards G, Heagerty AM, Weston AH (2004) Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br J Pharmacol 142:192–202

    Article  PubMed  CAS  Google Scholar 

  • Garry A, Fromy B, Blondeau N, Henrion D, Brau F, Gounon P, Guy N, Heurteaux C, Lazdunski M, Saumet JL (2007) Altered acetylcholine, bradykinin and cutaneous pressure-induced vasodilation in mice lacking the TREK1 potassium channel: the endothelial link. EMBO Rep 8:354–359

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527–540

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  PubMed  CAS  Google Scholar 

  • Gonczi M, Szentandrassy N, Johnson IT, Heagerty AM, Weston AH (2006) Investigation of the role of TASK-2 channels in rat pulmonary arteries; pharmacological and functional studies following RNA interference procedures. Br J Pharmacol 147:496–505

    Article  PubMed  CAS  Google Scholar 

  • Goonetilleke L (2007) Two-pore domain potassium channels in arterial smooth muscle. PhD Thesis. University of Liverpool, Liverpool

  • Goonetilleke L, Green TP, Quayle J (2007) TASK-2 K+ channel expression in rat mesenteric and femoral arteries. Proc Physiol Soc 7, PC6

  • Gurney AM (2004) Functional roles of ion channels in the regulation of membrane potential and pulmonary vascular tone. In: Yuan JX-J (eds) Ion channels in the pulmonary vasculature. Marcel Dekker, New York, pp 447–461

    Google Scholar 

  • Gurney AM, Joshi S (2006) The role of twin pore domain and other K+ channels in hypoxic pulmonary vasoconstriction. Novartis Found Symp 272:218–228; discussion 228–33, 274–9

    Article  PubMed  CAS  Google Scholar 

  • Gurney AM, Osipenko ON, MacMillan D, Kempsill FE (2002) Potassium channels underlying the resting potential of pulmonary artery smooth muscle cells. Clin Exp Pharmacol Physiol 29:330–333

    Article  PubMed  CAS  Google Scholar 

  • Gurney AM, Osipenko ON, MacMillan D, McFarlane KM, Tate RJ, Kempsill FE (2003) Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ Res 93:957–964

    Article  PubMed  CAS  Google Scholar 

  • Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695

    Article  PubMed  CAS  Google Scholar 

  • Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G, Lazdunski M (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29:1511–1523

    Article  PubMed  CAS  Google Scholar 

  • Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351:1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1107

    Article  PubMed  CAS  Google Scholar 

  • Jeyaraj D, Wilson LD, Zhong J, Flask C, Saffitz JE, Deschenes I, Yu X, Rosenbaum DS (2007) Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation 115:3145–3155

    Article  PubMed  Google Scholar 

  • Jones SA, Morton MJ, Hunter M, Boyett MR (2002) Expression of TASK-1, a pH-sensitive twin-pore domain K+ channel, in rat myocytes. Am J Physiol Heart Circ Physiol 283:H181–H185

    PubMed  CAS  Google Scholar 

  • Kim D (1992) A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. J Gen Physiol 100:1021–1040

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Clapham DE (1989) Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science 244:1174–1176

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Duff RA (1990) Regulation of K+ channels in cardiac myocytes by free fatty acids. Circ Res 67:1040–1046

    PubMed  CAS  Google Scholar 

  • Kim D, Fujita A, Horio Y, Kurachi Y (1998) Cloning and functional expression of a novel cardiac two-pore background K+ channel (cTBAK-1). Circ Res 82:513–518

    PubMed  CAS  Google Scholar 

  • Kim Y, Bang H, Kim D (1999) TBAK-1 and TASK-1, two-pore K+ channel subunits: kinetic properties and expression in rat heart. Am J Physiol 277:H1669–H1678

    PubMed  CAS  Google Scholar 

  • Kiyoshi H, Yamazaki D, Ohya S, Kitsukawa M, Muraki K, Saito SY, Ohizumi Y, Imaizumi Y (2006) Molecular and electrophysiological characteristics of K+ conductance sensitive to acidic pH in aortic smooth muscle cells of WKY and SHR. Am J Physiol Heart Circ Physiol 291:H2723–H2734

    Article  PubMed  CAS  Google Scholar 

  • Kostin S, Scholz D, Shimada T, Maeno Y, Mollnau H, Hein S, Schaper J (1998) The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res 294:449–460

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374:135–141

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY (1993) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364:802–806

    Article  PubMed  CAS  Google Scholar 

  • Lab MJ (1999) Mechanosensitivity as an integrative system in heart: an audit. Prog Biophys Mol Biol 71:7–27

    Article  PubMed  CAS  Google Scholar 

  • Leonoudakis D, Gray AT, Winegar BD, Kindler CH, Harada M, Taylor DM, Chavez RA, Forsayeth JR, Yost CS (1998) An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J Neurosci 18:868–877

    PubMed  CAS  Google Scholar 

  • Lesage F (2003) Pharmacology of neuronal background potassium channels. Neuropharmacology 44:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793–F801

    PubMed  CAS  Google Scholar 

  • Li XT, Dyachenko V, Zuzarte M, Putzke C, Preisig-Muller R, Isenberg G, Daut J (2006) The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 69:86–97

    Article  CAS  Google Scholar 

  • Linden AM, Aller MI, Leppa E, Vekovischeva O, Aitta-Aho T, Veale EL, Mathie A, Rosenberg P, Wisden W, Korpi ER (2006) The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmacol Exp Ther 317:615–626

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Enyeart JA, Enyeart JJ (2007) Angiotensin II inhibits native bTREK-1 K+ channels through a PLC-, kinase C-, and PIP2-independent pathway requiring ATP hydrolysis. Am J Physiol Cell Physiol 293:C682–C695

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Saint DA (2004) Heterogeneous expression of tandem-pore K+ channel genes in adult and embryonic rat heart quantified by real-time polymerase chain reaction. Clin Exp Pharmacol Physiol 31:174–178

    Article  PubMed  CAS  Google Scholar 

  • Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA (2000) Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem 275:16969–16978

    Article  PubMed  CAS  Google Scholar 

  • Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE (2005) PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol 564:117–129

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Patel AJ, Lazdunski M, Honore E (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. Embo J 20:47–54

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    Article  PubMed  CAS  Google Scholar 

  • Mandegar M, Yuan JX (2002) Role of K+ channels in pulmonary hypertension. Vascul Pharmacol 38:25–33

    Article  PubMed  CAS  Google Scholar 

  • Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578:377–85

    Article  PubMed  CAS  Google Scholar 

  • Mauban JR, Remillard CV, Yuan JX (2005) Hypoxic pulmonary vasoconstriction: role of ion channels. J Appl Physiol 98:415–420

    Article  PubMed  CAS  Google Scholar 

  • Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86:101–114

    Article  PubMed  CAS  Google Scholar 

  • Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Meuth P, Kleinschnitz C, Pape HC, Wiendl H, Wisden W, Budde T (2006) The contribution of TWIK-related acid-sensitive K+-containing channels to the function of dorsal lateral geniculate thalamocortical relay neurones. Mol Pharmacol 69:1468–1476

    Article  PubMed  CAS  Google Scholar 

  • Millar JA, Barratt L, Southan AP, Page KM, Fyffe RE, Robertson B, Mathie A (2000) A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurones. Proc Natl Acad Sci USA 97:3614–3618

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Gutterman DD (1998) Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca2+-activated K+ channels. Circ Res 83:501–507

    PubMed  CAS  Google Scholar 

  • Moudgil R, Michelakis ED, Archer SL (2006) The role of K+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 13:615–632

    Article  PubMed  CAS  Google Scholar 

  • Nazir SA, Lab MJ (1996) Mechanoelectric feedback in the atrium of the isolated guinea-pig heart. Cardiovasc Res 32:112–119

    PubMed  CAS  Google Scholar 

  • Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822

    PubMed  CAS  Google Scholar 

  • Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253

    Article  PubMed  CAS  Google Scholar 

  • Noma A, Nakayama T, Kurachi Y, Irisawa H (1984) Resting K conductances in pacemaker and non-pacemaker heart cells of the rabbit. Jpn J Physiol 34:245–254

    Article  PubMed  CAS  Google Scholar 

  • O’Kelly I, Butler MH, Zilberberg N, Goldstein SA (2002) Forward transport. 14–3–3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111:577–588

    Article  PubMed  CAS  Google Scholar 

  • O’Kelly I, Stephens RH, Peers C, Kemp PJ (1999) Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. Am J Physiol 276:L96–L104

    PubMed  CAS  Google Scholar 

  • Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir EK, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H (2006) Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 98:1072–1080

    Article  PubMed  CAS  Google Scholar 

  • Osipenko ON, Evans AM, Gurney AM (1997) Regulation of the resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current. Br J Pharmacol 120:1461–1470

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283–4290

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Lazdunski M, Honore E (1997) Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J 16:6615–6625

    Article  PubMed  CAS  Google Scholar 

  • Plant LD, Rajan S, Goldstein SA (2005) K2P channels and their protein partners. Curr Opin Neurobiol 15:326–333

    Article  PubMed  CAS  Google Scholar 

  • Platoshyn O, Brevnova EE, Burg ED, Yu Y, Remillard CV, Yuan JX (2006) Acute hypoxia selectively inhibits KCNA5 channels in pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 290:C907–C916

    Article  PubMed  CAS  Google Scholar 

  • Poling JS, Rogawski MA, Salem N Jr, Vicini S (1996) Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K+ channels. Neuropharmacology 35:983–991

    Article  PubMed  CAS  Google Scholar 

  • Post JM, Hume JR, Archer SL, Weir EK (1992) Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol 262:C882–C890

    PubMed  CAS  Google Scholar 

  • Powell T, Terrar DA, Twist VW (1980) Electrical properties of individual cells isolated from adult rat ventricular myocardium. J Physiol 302:131–153

    PubMed  CAS  Google Scholar 

  • Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, Archer SL (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037–2044

    Article  PubMed  CAS  Google Scholar 

  • Prior HM, Yates MS, Beech DJ (1998) Functions of large conductance Ca2+-activated (BKCa), delayed rectifier (KV) and background K+ channels in the control of membrane potential in rabbit renal arcuate artery. J Physiol 511(Pt 1):159–169

    Article  PubMed  CAS  Google Scholar 

  • Putzke C, Wemhoner K, Sachse FB, Rinne S, Schlichthorl G, Li XT, Jae L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Muller R, Daut J, Decher N (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75:59–68

    Article  PubMed  CAS  Google Scholar 

  • Quayle JM, Nelson MT, Standen NB (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77:1165–1232

    PubMed  CAS  Google Scholar 

  • Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121:37–47

    Article  PubMed  CAS  Google Scholar 

  • Rajan S, Preisig-Muller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthorl G, Derst C, Karschin A, Daut J (2002) Interaction with 14–3–3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 545:13–26

    Article  PubMed  CAS  Google Scholar 

  • Randall MD, Alexander SP, Bennett T, Boyd EA, Fry JR, Gardiner SM, Kemp PA, McCulloch AI, Kendall DA (1996) An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem Biophys Res Commun 229:114–120

    Article  PubMed  CAS  Google Scholar 

  • Ravens U (2003) Mechano-electric feedback and arrhythmias. Prog Biophys Mol Biol 82:255–266

    Article  PubMed  Google Scholar 

  • Ravens U, Wang XL, Wettwer E (1989) Alpha adrenoceptor stimulation reduces outward currents in rat ventricular myocytes. J Pharmacol Exp Ther 250:364–370

    PubMed  CAS  Google Scholar 

  • Remillard CV, Tigno DD, Platoshyn O, Burg ED, Brevnova EE, Conger D, Nicholson A, Rana BK, Channick RN, Rubin LJ, O’Connor D T, Yuan JX (2007) Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C1837–C1853

    Article  PubMed  CAS  Google Scholar 

  • Rosolowsky M, Campbell WB (1993) Role of PGI2 and epoxyeicosatrienoic acids in relaxation of bovine coronary arteries to arachidonic acid. Am J Physiol 264:H327–H335

    PubMed  CAS  Google Scholar 

  • Ruskoaho H (1992) Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev 44:479–602

    PubMed  CAS  Google Scholar 

  • Ruwhof C, van der Laarse A (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47:23–37

    Article  PubMed  CAS  Google Scholar 

  • Seino S (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 61:337–362

    Article  PubMed  CAS  Google Scholar 

  • Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) Cns distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    PubMed  CAS  Google Scholar 

  • Tan JH, Liu W, Saint DA (2002) Trek-like potassium channels in rat cardiac ventricular myocytes are activated by intracellular ATP. J Membr Biol 185:201–207

    Article  PubMed  CAS  Google Scholar 

  • Tan JH, Liu W, Saint DA (2004) Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle. Exp Physiol 89:237–242

    Article  PubMed  CAS  Google Scholar 

  • Tennant BP, Cui Y, Tinker A, Clapp LH (2006) Functional expression of inward rectifier potassium channels in cultured human pulmonary smooth muscle cells: evidence for a major role of Kir2.4 subunits. J Membr Biol 213:19–29

    Article  PubMed  CAS  Google Scholar 

  • Terrenoire C, Lauritzen I, Lesage F, Romey G, Lazdunski M (2001) A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ Res 89:336–342

    Article  PubMed  CAS  Google Scholar 

  • Van den Bossche I, Vanheel B (2000) Influence of cannabinoids on the delayed rectifier in freshly dissociated smooth muscle cells of the rat aorta. Br J Pharmacol 131:85–93

    Article  PubMed  Google Scholar 

  • Wang J, Juhaszova M, Rubin LJ, Yuan XJ (1997) Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary artery smooth muscle cells. J Clin Invest 100:2347–2353

    Article  PubMed  CAS  Google Scholar 

  • Wareing M, Bai X, Seghier F, Turner CM, Greenwood SL, Baker PN, Taggart MJ, Fyfe GK (2006) Expression and function of potassium channels in the human placental vasculature. Am J Physiol Regul Integr Comp Physiol 291:R437–R446

    PubMed  CAS  Google Scholar 

  • Watkins WD, Peterson MB, Crone RK, Shannon DC, Levine L (1980) Prostacyclin and prostaglandin E1 for severe idiopathic pulmonary artery hypertension. Lancet 1:1083

    PubMed  CAS  Google Scholar 

  • Westphalen RI, Krivitski M, Amarosa A, Guy N, Hemmings HC Jr (2007) Reduced inhibition of cortical glutamate and GABA release by halothane in mice lacking the K+ channel, TREK-1. Br J Pharmacol 152:939–945

    Article  PubMed  CAS  Google Scholar 

  • White R, Ho WS, Bottrill FE, Ford WR, Hiley CR (2001) Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries. Br J Pharmacol 134:921–929

    Article  PubMed  CAS  Google Scholar 

  • Zankov DP, Omatsu-Kanbe M, Isono T, Toyoda F, Ding WG, Matsuura H, Horie M (2006) Angiotensin II potentiates the slow component of delayed rectifier K+ current via the AT1 receptor in guinea pig atrial myocytes. Circulation 113:1278–1286

    Article  PubMed  CAS  Google Scholar 

  • Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL (2000) Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ Res 87:160–166

    PubMed  CAS  Google Scholar 

  • Zhang Y, Tazzeo T, Chu V, Janssen LJ (2006) Membrane potassium currents in human radial artery and their regulation by nitric oxide donor. Cardiovasc Res 71:383–392

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Gurney.

Additional information

EBSA satellite meeting: ion channels, Leeds, July 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurney, A., Manoury, B. Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38, 305–318 (2009). https://doi.org/10.1007/s00249-008-0326-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0326-8

Keywords

Navigation