Skip to main content
Log in

The upstream region radial flow and average molecular weight effect on the molten PDMS processibility

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The present study investigated the influence of a created radial flow upstream of the extrusion die and the average molecular weight on the processibility of polymer melts. Two linear polydimethylsiloxanes (PDMS) of different molecular weights were considered. A convergent radial flow was created at the entrance zone by imposing a rod upstream the capillary die. The flow of the tested PDMSs has been studied using capillary rheometry and particle image velocimetry (PIV). The obtained experimental results revealed a transition zone, on the flow curves (associated to the two PDMSs), located between the end of the surface instability zone and the onset of the gross melt fracture. The morphology of the associated extrudate strand is changed. Furthermore, the PIV recording under the unstable flow shows a new flow pattern in the front of the die due to the created radial flow. The possible origin of the new flow instability was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adewale KEP, Olabisi O, Oyediran AA, Olunloyo VOS (2013) A stick-slip problem related to melt fracture in polymer processing operations. Int Polym Proc 30(6):195–198

    Google Scholar 

  • Agassant JF, Arda, Combeaud C, Merten A, Munstedr H, Mackley MR, L Robert, Vergne B (2006) Polymer processing extrusion instabilities and methods for their elimination or minimization. International polymer processing XXI 3.

  • Allal A, Lavernhe A, Vergnes B, Marin G (2006) Relationships between molecular structure and sharkskin defect for linear polymers. J Non Newtonian Fluid Mech 134:127–135

    Article  CAS  Google Scholar 

  • Ayadi A, Elgasri S, Mezghani A, Castro M, Elhaouani F (2011) Effect of radial flow in the die entrance region on gross melt fracture of PDMS extrudate. J Non Newtonian Fluid Mech 166:661–666

    Article  CAS  Google Scholar 

  • Bagley EB, Schreiber HP (1961) Effect of die entry geometry on polymer melts fracture and extrudate distortion. Trans Soc Rheol 5:341–353

    Article  Google Scholar 

  • Batchelor GK (1985) An introduction to fluid dynamics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Blyler LL, Hart AC (1970) Capillary flow instability of ethylene polymer melts. Polym Eng Sci 10:193–203

    Article  CAS  Google Scholar 

  • Boger DV, Walters K (2000) Experimental dilemmas in non-Newtonian fluid mechanics and their theoretical resolution. Korea-Aust Rheol J 12(1):27–38

    Google Scholar 

  • Combeaud C (2004) Study of volume instabilies inextrusion of polypropylene and polystyrene, PHD, University of Mines.

  • Den Otter JL (1970) Mechanisms of melt fracture. Plast Polym:155–168.

  • Done DS, Baird DG, Average AE (1983) The influence of porous media on the flow of polymer melts in capillaries. Chem Eng Commun 21:293–309

    Article  CAS  Google Scholar 

  • Elgasri S, Ayadi A, Elhaouani F (2011) Effect of die geometry on helical defect during extrusion of PDMS across a radial flow upstream the contraction. J Non Newtonian Fluid Mech 166:1415–1420

    Article  CAS  Google Scholar 

  • Elkissi N, Piau JM (1996) Stability phenomena during polymer melt extrusion. In: Piau JM, Agassant JF (eds) Rheology for polymer melts processing. Elsevier, Amsterdam

    Google Scholar 

  • Elkissi N, Léger L, Piau JM, Mezghani A (1994) Effect of surface properties on polymer melt slip and extrusion defects. J Non-Newtonian Fluid Mech 52:249–261

  • Elkissi N, Piau JM, Toussaint F (1997) Sharkskin and cracking of polymer melt extrudates. J Non Newtonian Fluid Mech 68(2–3):271–290

    Article  CAS  Google Scholar 

  • Faure Th, Sato M, Lecocq Y (2003) Mesures PIV par flot optique dans deux types d’écoulements turbulents. Notes et documents LIMSI N :17–18.

  • Fernandez M, Vega J, Santamaria A, Munoz-Escalona A, Lafuente P (2000) The effect of chain architecture on “sharkskin” of metallocene polyethylenes. Macromol Rapid Commun 21:973–978

    Article  CAS  Google Scholar 

  • Fuller G, Yim KS, Brooks C, Olson D, Frank C (1999) The rheology of two dimensional systems. Korea-Australia Rheology 11(4):321–328

    Google Scholar 

  • Goyal S, Kazatchkov I, Bohnet N, Hatzikiriakos SG (1997) Influence of molecular weight distribution on the rheological behavior of LLDP resins. Antec’97- Plastics saving earth, Conference Proceeding 1(3):1076

    Google Scholar 

  • Goutille Y, Guillet J (2002) Influence of filters in the die entrance region on gross melt fracture: extrudate and flow visualization. J Non Newtonian Fluid Mech 102:19–36

    Article  CAS  Google Scholar 

  • Goutille Y, Guillet J (2002) Disentanglement of polymer melts flowing through porous medium before entering a capillary die. J Rheol 46:1307–1323

    Article  CAS  Google Scholar 

  • Goutille Y, Majesté JC, Tassin JF, Guillet J (2003) Molecular structure and gross melt fracture triggering. J Non-Newtonian Fluid Mech 111:175–198

    Article  CAS  Google Scholar 

  • Ketata M, Ayadi A, Elkissi N, Bradai Ch (2017) Effect of rheological and physical properties on mitigation of melt fracture instability during extrusion of polymer melts through a radial flow die. Rheol Acta 56:341

    Article  CAS  Google Scholar 

  • Ketata M, Ayadi A, Bradai Ch, Abid MS (2020) Effect of a radial flow foregoing a capillary die on the behavior of extruded PDMS: velocity field–distorted strand correlation. Rheol Acta 59:425–434

    Article  CAS  Google Scholar 

  • Koopmans R (2002) Engineering techniques, processed plastics and composites, AM3657.

  • Koopmans R, Molenaar J (1998) The “sharkskin effect” in polymer extrusion. Polym Eng Sci 38:101–107

    Article  CAS  Google Scholar 

  • Kurtz SJ (1992) The dynamics of sharkskin melt fracture: effect of die geometry. Theoretical and Applied Rheology 1:377–379

    Article  CAS  Google Scholar 

  • Legrand F, Piau JM (1998) Spatially resolved stress birefringence and flow visualization in the flow instabilities of a polydimethylsyloxane extruded through a slit die. J Non-Newtonian Fluid Mech 77:123–150

    Article  CAS  Google Scholar 

  • Meh M (1997) Private communication.

  • Muller R, Vergnes B (1996) Validity of the stress optical law and application of birefringence to polymer complex flows. In: Piau JM, Agassant JF (Eds.) Rheology for polymer processing, Elsevier.

  • Nigen S, El Kissi N, Piau JM, Sadun S (2003) Velocity field for polymer melts extrusion using particle image velocimetry stable and unstable flow regimes. J Non Newton Fluid Mech 112:177–202

    Article  CAS  Google Scholar 

  • Petrie C, Denn M (1976) Instabilities in polymer processing. AIChE 22: 209-236

  • Piau JM, El Kissi N, Tremblay B (1990) Influence of upstream instabilities and wall slip on melt fracture and sharkskin phenomena during silicones extrusion through orifice dies. J Non-Newtonian Fluid Mech 34:145–180

    Article  CAS  Google Scholar 

  • Piau JM, ElKissi N, Mezghani A (1995) Slip flow of polybutadiene through fluorinated dies. J Non-Newtonian Fluid Mech 59:11–30

    Article  CAS  Google Scholar 

  • Piau JM, ElKissi N, Toussaint F, Mezghani A (1995) Distortions of polymer melt extrudates and their elimination using slippery surfaces. Rheol Acta 34:40–57

    Article  CAS  Google Scholar 

  • Piau JM, Nigen S, ElKissi N (2000) Effect of die entrance filtering on mitigation of upstreaminstability during extrusion of polymermelts. J Non-Newtonian Fluid Mech 91:37–57

    Article  CAS  Google Scholar 

  • Ramamurthy A (1988) Extrudate irregularities and the polymer-metal interface connection. Xth International Congress on Rheology, Sydney, Australia, pp 85–90

    Google Scholar 

  • Rothstein JR, McKinley GH (2001) The axisymmetric contraction expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J Non-Newtonian Fluid Mech 98:33–63

    Article  CAS  Google Scholar 

  • Vega J, Fernandez M, Santamaria A, Munoz-Escalona A, Lafuente P (1999) Rheological criteria to characterize metallocene catalyzed polyethylenes. Chem Phys 200:2257–2268

    CAS  Google Scholar 

  • Vlachopoulos J, Alam M (1972) Critcal stress and recoverable shear for polymer melt fracture. Polym Eng Sci 12(3):184–192

    Article  CAS  Google Scholar 

  • Vergnes B (2015) Extrusion defects and flow instabilities of molten polymers. Int Polym Proc 30(1):3–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Ketata.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketata, M., Ayadi, A. & Bradai, C. The upstream region radial flow and average molecular weight effect on the molten PDMS processibility. Rheol Acta 60, 775–785 (2021). https://doi.org/10.1007/s00397-021-01311-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-021-01311-2

Keywords

Navigation