Skip to main content
Log in

Effect of characteristics of shear force on secondary structures and viscosity of bovine serum albumin solution

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We have explored the effect of shear force on aggregate size, the secondary structure of proteins, and the viscosity of protein bovine serum albumin solution. The size of protein aggregates and secondary structures of the protein are dependent on the external variables such as temperature, the magnitude of shear, time of shearing, and process of applying shear. The process of application of shear, which can be continuous or intermittent periodic stoppage, can control the characteristics of aggregates of BSA. The viscosity of the protein solution is expected to depend on the size of the aggregates. We have proposed a mechanism of the association of BSA molecules leading to the formation of aggregates. Small aggregates at 40 °C are formed through the interaction of side chains, while bigger aggregates formed at 60 °C through β-sheet interaction. The indication of the opening of the BSA molecules at an intermediate temperature is confirmed by the appearance of more side chain and random coil. The shear leads to a highly anisotropic structure at a temperature beyond 60 °C and leads to the higher hydrodynamic radius. This makes the solution to undergo transition from dilute to semi-dilute regime and increase in viscosity by a factor fourfold. Subsequently, we have shown that the viscosity depends on the proportion of β-sheet within the aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Atmeh RF, Arafa IM, Al-Khateeb M (2007) Albumin aggregates: hydrodynamic shape and physico-chemical properties. Jordan J Chem 2:169–182

    CAS  Google Scholar 

  • Bagger HL, Ogendal LH, Westh P (2007) Solute effects on the irreversible aggregation of serum albumin. Biophys Chem 130:17–25

    Article  CAS  Google Scholar 

  • Bandekar J (1920) Amide modes and protein conformation. Biochim Biophys Acta Protein Struct Mol Enzymol 1120:123–143

    Article  Google Scholar 

  • Bekard IB, Asimakis P, Bertolini J, Dunstan DE (2011a) The effects of shear flow on protein structure and function. Biopolymers 95:733–745

    CAS  Google Scholar 

  • Bekard IB, Asimakis P, Teoh CL, Ryan T, Howlett GJ, Bertolini J, Dunstan DE (2011b) Bovine serum albumin unfolds in couette flow. Soft Matter 8:385–389

    Article  Google Scholar 

  • Bhattacharya M, Jain N, Mukhopadhyay S (2011) Insights into the mechanism of aggregation and fibril formation from bovine serum albumin. J Phys Chem B 115:4195–4205

    Article  CAS  Google Scholar 

  • Borzova VA, Markossian KA, Chebotareva NA, Kleymenov SY, Poliansky NB, Muranov KO, Kurganov BI (2016) Kinetics of thermal denaturation and aggregation of bovine serum albumin. PLoS One 11:e0153495

    Article  Google Scholar 

  • Bramanti E, Ferrari C, Angeli V, Onor M, Synovec RE (2011) Characterization of BSA unfolding and aggregation using a single-capillary viscometer and dynamic surface tension detector. Talanta 85:2553–2561

    Article  CAS  Google Scholar 

  • Bull HB (1940) Viscosity of solutions of denatured and native egg albumin. J Biol Chem 133:39–49

    CAS  Google Scholar 

  • Byler DM, Susi H (1983c) Protein structure by fourier transform infrared spectroscopy: second derivative spectra. Biochem Biophys Res Commun 115:391–397

    Article  Google Scholar 

  • Byler DM, Susi H (1986a) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  CAS  Google Scholar 

  • Byler DM, Susi H (1986b) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol 130:290–311

    Article  Google Scholar 

  • Castellanos MM, Pathak JA, Colby RH (2014) Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions. Soft Matter 10:122–131

    Article  CAS  Google Scholar 

  • Chittur KK (1998) FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19:357–369

    Article  CAS  Google Scholar 

  • Clark AH, Judge FJ, Richards JB, Stubbs JM, Suggett A (1981) Electron microscopy of network structures in thermally-induced globular protein gels. Int J Pept Protein Res 17:380–392

    Article  CAS  Google Scholar 

  • Curvale R, Cesco C (2009) Intrinsic viscosity determination by ‘single-point’ and ‘double-point’ equations. Appl Rheol 19:53347

    Google Scholar 

  • Curvale R, Masuelli MA, Perez Padilla A (2008) Intrinsic viscosity of bovine serum albumin conformers. Int J Biol Macromol 42:133–137

    Article  CAS  Google Scholar 

  • Ding F, Borreguero JM, Buldyrey SV, Stanley HE, Dokholyan NV (2003) Mechanism for the α-helix to β-hairpin transition. Proteins Struct Funct Genet 53:220–228

    Article  CAS  Google Scholar 

  • Douglas JF, Curtis R, Sarangapani PS, Hudson SD, Jones RL, Pathak JA (2017) Hard spheres with purely repulsive interactions have positive diffusion interaction parameter, kD. Biophys J 113:753–754

    Article  CAS  Google Scholar 

  • Foster JF (1977) Some aspects of the structure and conformational properties of serum albumin, Albumin structure, function and uses. Pergamon, New York, pp 53–84

    Google Scholar 

  • Green DW, Perry RH (2007) Gas-solid operations and equipment, Perry’s chemical engineers’ handbook, 8th edn. McGraw Hill Professional

  • Hedoux A, Willart JF, Paccou L, Guinet Y, Affouard F, Lerbret A, Descamps M (2009) Thermostabilization mechanism of bovine serum albumin by trehalose. J Phys Chem B 113:6119–6126

    Article  CAS  Google Scholar 

  • Hirayama K, Akashi S, Furuya M, Fukuhara K (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and FRIT-fab LC/MS. Biochem Biophys Res Commun 173:639–646

    Article  CAS  Google Scholar 

  • Ismail AA, Mantsch HH, Wong PT (1992) Aggregation of chymotrypsinogen: portrait by infrared spectroscopy. Biochim Biophys Acta 1121:183–188

    Article  CAS  Google Scholar 

  • Juairez J, Loipez SG, Camboin A, Taboada P, Mosquera V (2009) Influence of electrostatic interactions on the fibrillation process of human serum albumin. J Phys Chem B 113:10521–10529

    Article  Google Scholar 

  • Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559

    Article  CAS  Google Scholar 

  • Kumar S, Pattanayek SK (2018) Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: an atomistic investigation. Chem Phys Lett 701:22–29

    Article  CAS  Google Scholar 

  • Lefevre T, Subirade M (2000) Molecular differences in the formation and structure of fine-stranded and particulate -lactoglobulin gels. Biopolymers 54:578–586

    Article  CAS  Google Scholar 

  • MacGillivray RT, Chung A, Davie EW (1979) Biosynthesis of bovine plasma proteins in a cell-free system: amino-terminal sequence of preproalbumin. Eur J Biochem 98:477–485

    Article  CAS  Google Scholar 

  • Masuelli MA (2013) Study of bovine serum albumin solubility in aqueous solutions by intrinsic viscosity measurements. Adv Phys Chem 2013:1–8

    Article  Google Scholar 

  • Masuelli MA, Gassmann J (2017) Intrinsic viscosity bovine serum albumin in aqueous solutions: temperature influence on Mark-Houwink parameters. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers (part 1). Bentham Science Publishers – Sharjah, UAE, pp 28–59

    Chapter  Google Scholar 

  • Masuelli MA, Sansone MG (2012) Hydrodynamic properties of gelatin-studies from intrinsic viscosity measurements. In: Verbeek C (ed) Products and applications of biopolymers. INTECHOpen Access Publisher, London, pp 85–116

    Google Scholar 

  • Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, New York

    Google Scholar 

  • Militello V, Vetri V, Leone M (2003a) Conformational changes involved in thermal aggregation processes of bovine serum albumin. Biophys Chem 105:133–141

    Article  CAS  Google Scholar 

  • Militello V, Casarino C, Emanuele A, Giostra A, Pullara F, Leone M (2004b) Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem 107:175–187

    Article  CAS  Google Scholar 

  • Monkos K (1996) Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. Int J Biol Macromol 18:61–68

    Article  CAS  Google Scholar 

  • Monkos K (2004) On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim Biophys Acta 1700:27–34

    Article  CAS  Google Scholar 

  • Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1794:375–397

    Article  CAS  Google Scholar 

  • Murayama K, Tomida M (2004) Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry 43:11526–11153

    Article  CAS  Google Scholar 

  • Pandey NK, Ghosh S, Dasgupta S (2010) Fibrillation in human serum albumin is enhanced in the presence of copper(II). J Phys Chem B 114:10228–10233

    Article  CAS  Google Scholar 

  • Patterson JE, Geller DM (1977) Bovine microsomal albumin: amino terminal sequence of bovine proalbumin. Biochem Biophys Res Commun 74:1220–1226

    Article  CAS  Google Scholar 

  • Perticaroli S, Nickels JD, Ehlers G, Sokolov AP (2014) Rigidity, secondary structure, and the universality of the boson peak in proteins. Biophys J 106:2667–2674

    Article  CAS  Google Scholar 

  • Pindrus MA, Cole JL, Kaur J, Shire SJ, Yadav S, Kalonia DS (2017) Effect of aggregation on the hydrodynamic properties of bovine serum albumin. Pharm Res 34:2250–2259

    Article  CAS  Google Scholar 

  • Qin Z, Buehler MJ (2010) Molecular dynamics simulation of the α-helix to b-sheet transition in coiled protein filaments: evidence for a critical filament length scale. Phys Rev Lett 104:1–4

    Google Scholar 

  • Reed RG, Putnam FW, Peters T (1980) Sequence of residues 400--403 of bovine serum albumin. Biochem J 191:867–868

    Article  CAS  Google Scholar 

  • Surewicz WK, Mantsch HH (1988) New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta 952:115–130

    Article  CAS  Google Scholar 

  • Takeda K, Wada A, Yamamoto K, Moriyama Y, Aoki K (1989) Conformational change of bovine serum albumin by heat treatment. J Protein Chem 8:653–659

    Article  CAS  Google Scholar 

  • Urbanc B, Borreguero JM, Cruz L, Stanley HE (2006) Ab initio discrete molecular dynamics approach to protein folding and aggregation. Methods Enzymol 412:314–338

    Article  CAS  Google Scholar 

  • Wang W, Roberts CJ (2010) Aggregation of therapeutic proteins. Wiley

  • Wang XQ, Liu J, Sun LM, Yu L, Jiao JJ, Wang R (2012) Interaction of bovine serum albumin with ester-functionalized anionic surface-active ionic liquids in aqueous solution: a detailed physicochemical and conformational study. J Phys Chem B 116:12479–12488

    Article  CAS  Google Scholar 

  • Wright AK, Thompson MR (1975) Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophys J 15:137–141

    Article  CAS  Google Scholar 

  • Yamasaki M, Yano H, Aoki K (1990) Differential scanning calorimetric studies on bovine serum albumin: i. effects of pH and ionic strength. Int J Biol Macromol 12:263–268

    Article  CAS  Google Scholar 

  • Yang JT (1960) The viscosity of macromolecules in relation to molecular conformation. Adv Protein Chem 16:323–400

    Article  Google Scholar 

  • Yohannes G, Wiedmer SK, Elomaa M, Jussila M, Aseyev V, Riekkola ML (2010) Thermal aggregation of bovine serum albumin studied by asymmetrical flow field-flow fractionation. Anal Chim Acta 675:191–198

    Article  CAS  Google Scholar 

  • Yu P (2005) Multicomponent peak modeling of protein secondary structures: comparison of Gaussian with Lorentzian analytical methods for plant feed and seed molecular biology and chemistry research. Appl Spectrosc 59:1372–1380

    Article  CAS  Google Scholar 

Download references

Funding

This work received a financial support from SERB, DST, Ministry of Science and Technology, India (sanction number SB/S3/CE/086/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. Pattanayek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, I., Pattanayek, S.K. Effect of characteristics of shear force on secondary structures and viscosity of bovine serum albumin solution. Rheol Acta 57, 801–812 (2018). https://doi.org/10.1007/s00397-018-1116-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-018-1116-6

Keywords

Navigation