Skip to main content
Log in

Effect of Aggregation on the Hydrodynamic Properties of Bovine Serum Albumin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To systematically analyze shape and size of soluble irreversible aggregates and the effect of aggregate formation on viscosity.

Methods

Online light scattering, refractive index and viscosity detectors attached to HPLC (Viscotek®) were used to study aggregation, molecular weight and intrinsic viscosity of bovine serum albumin (BSA). Irreversible aggregates were generated by heat stress. Bulk viscosity was measured by an oscillating piston viscometer.

Results

As BSA was heated at a higher concentration or for a longer time, the relative contribution, molecular weight and intrinsic viscosity of aggregate species increased. Molecular shape was evaluated from intrinsic viscosity values, and aggregates were estimated to be more asymmetric than monomer species. The presence of aggregates resulted in an increase in bulk viscosity when relative contribution of very high molecular weight species exceeded 10%.

Conclusions

For model system and conditions studied, generation of higher order aggregate species was concluded to be associated with an increase in molecular asymmetry. Elevated viscosity in the presence of aggregated species points to molecular asymmetry being a critical parameter affecting solution viscosity of BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DP:

Differential pressure

HMW:

High molecular weight

LALS:

Low angle light scattering

mAb:

Monoclonal antibody

mM:

Millimolar

PPI:

Protein-protein interactions

RALS:

Right angle light scattering

RI:

Refractive index

SEC:

Size exclusion chromatography

TDA:

Triple detector array

vHMW:

Very high molecular weight

References

  1. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93:1390–402.

    Article  CAS  PubMed  Google Scholar 

  2. Braun A, Kwee L, Labow MA, Alsenz J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice. Pharm Res. 1997;14:1472–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8:E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol. 2014;30:211–7.

    Article  CAS  PubMed  Google Scholar 

  5. Choi S, Park J. Microfluidic rheometer for characterization of protein unfolding and aggregation in microflows. Small. 2010;6:1306–10.

    Article  CAS  PubMed  Google Scholar 

  6. Kovalchuk N, Starov V, Holdich R. Effect of aggregation on viscosity of colloidal suslension. Colloid J. 2010;72:647–52.

    Article  CAS  Google Scholar 

  7. Pathak JA, Sologuren RR, Narwal R. Do clustering monoclonal antibody solutions really have a concentration dependence of viscosity? Biophys J. 2013;104:913–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94:1928–40.

    Article  CAS  PubMed  Google Scholar 

  9. Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions. Mol Pharm. 2012;9:791–802.

    Article  CAS  PubMed  Google Scholar 

  10. Ross PD, Minton AP. Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Commun. 1977;76:971–6.

    Article  CAS  PubMed  Google Scholar 

  11. Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci. 1951;6:162–70.

    Article  CAS  Google Scholar 

  12. Frensdorff H, Watson M, Kauzmann W. The kinetics of protein denaturation. IV. The viscosity and gelation of urea solutions of Ovalbumin1. J. Am. Chem Soc. 1953;75:5157–66.

    Article  CAS  Google Scholar 

  13. Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20:1325–36.

    Article  CAS  PubMed  Google Scholar 

  14. Roberts CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007;98:927–38.

    Article  CAS  PubMed  Google Scholar 

  15. Sharma VK, Kalonia DS. Experimental detection and characterization of protein aggregates. Aggregation of Ther Proteins. 2010:205–56.

  16. Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12:708–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalonia C, Kumru OS, Kim JH, Middaugh CR, Volkin DB. Radar chart array analysis to visualize effects of formulation variables on IgG1 particle formation as measured by multiple analytical techniques. J Pharm Sci. 2013;102:4256–67.

    Article  CAS  PubMed  Google Scholar 

  18. Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, et al. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103:796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalonia C, Kumru OS, Prajapati I, Mathaes R, Engert J, Zhou S, et al. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data. J Pharm Sci. 2015;104:536–47.

    Article  CAS  PubMed  Google Scholar 

  20. Harding SE. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol. 1997;68:207–62.

    Article  CAS  PubMed  Google Scholar 

  21. Harding SE. On the hydrodynamic analysis of macromolecular conformation. Biophys Chem. 1995;55:69–93.

    Article  CAS  PubMed  Google Scholar 

  22. Bajaj H, Sharma VK, Kalonia DS. Determination of second virial coefficient of proteins using a dual-detector cell for simultaneous measurement of scattered light intensity and concentration in SEC-HPLC. Biophys J. 2004;87:4048–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Solomon O, Ciutǎ I. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J Appl Polym Sci. 1962;6:683–6.

    Article  CAS  Google Scholar 

  24. Solomon VO, Gotesman B. Zur berechnung der viskositätszahl aus einpunktmessungen. Die Makromol Chem. 1967;104:177–84.

    Article  CAS  Google Scholar 

  25. Yadav S, Shire SJ, Kalonia DS. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J Pharm Sci. 2010;99:4812–29.

    Article  CAS  PubMed  Google Scholar 

  26. Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286:25118–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289:1–30.

    Article  CAS  PubMed  Google Scholar 

  28. Buzzell JG, Tanford C. The effect of charge and ionic strength on the viscosity of ribonuclease. J Phys Chem. 1956;60:1204–7.

    Article  CAS  Google Scholar 

  29. Tanford C, Buzzell J. G. The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J Phys Chem. 1956;60:225–31.

    Article  CAS  Google Scholar 

  30. El Kadi N, Taulier N, Le Huerou J, Gindre M, Urbach W, Nwigwe I, et al. Unfolding and refolding of bovine serum albumin at acid pH: ultrasound and structural studies. Biophys J. 2006;91:3397–404.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Curvale R, Masuelli M, Padilla AP. Intrinsic viscosity of bovine serum albumin conformers. Int J Biol Macromol. 2008;42:133–7.

    Article  CAS  PubMed  Google Scholar 

  32. Sarangapani PS, Hudson SD, Migler KB, Pathak JA. The limitations of an exclusively colloidal view of protein solution hydrodynamics and rheology. Biophys J. 2013;105:2418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Squire PG, Moser P, O'Konski CT. Hydrodynamic properties of bovine serum albumin monomer and dimer. Biochem (N Y). 1968;7:4261–72.

    Article  CAS  Google Scholar 

  34. Ferrer ML, Duchowicz R, Carrasco B, de la Torre JG, Acuña AU. The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study. Biophys J. 2001;80:2422–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mehl J, Oncley J, Simha R. Viscosity and the shape of protein molecules. Science. 1940;92:132–3.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors would like to thank Lauren Fontana and Rui Fang for help with some experimental aspects, and Elizabeth Zecca for critical reading of the manuscript. Generous material and financial support from Genentech, Inc., as well as Outstanding Scholar and summer fellowships from graduate school at University of Connecticut are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariya A. Pindrus.

Electronic supplementary material

ESM 1

(DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindrus, M.A., Cole, J.L., Kaur, J. et al. Effect of Aggregation on the Hydrodynamic Properties of Bovine Serum Albumin. Pharm Res 34, 2250–2259 (2017). https://doi.org/10.1007/s11095-017-2231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2231-2

KEY WORDS

Navigation