Skip to main content
Log in

Numerical simulations of Boger fluids through different contraction configurations for the development of a measuring system for extensional viscosity

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This paper reports the flow behaviour of Newtonian and Boger fluids through various axisymmetric contraction configurations by means of numerical predictions. A principal aim has been to evaluate the geometrical design choice of the hyperbolic contraction flow. The FENE-CR model has been used to reflect the behaviour of Boger fluids, with constant shear viscosity, finite (yet large) extensional viscosity and less than quadratic first normal stress difference. Numerical calculations have been performed on six different contraction configurations to evaluate an optimized geometry for measuring extensional viscosity in uniaxial extensional flow. The influence of a sharp or rounded recess-corner on the nozzle has also been investigated. Few commercial measuring systems are currently available for measurement of the extensional rheology of medium-viscosity fluids, such as foods and other biological systems. In this context, a technique based on the hyperbolic contraction flow would be a suitable alternative. The pressure drop, the velocity field, the first normal stress difference and the strain rate across the geometry have each been evaluated for Newtonian and Boger fluids. This numerical study has shown that the hyperbolic configuration is superior to the other geometry choices in achieving a constant extension rate. In this hyperbolic configuration, no vortices are formed, the measuring range is broader and the strain rate is constant throughout the geometric domain, unlike in the alternative configurations tested. The difference between sharp and rounded recess-corner configurations proved to be negligible and a rise in excess pressure drop (epd) for increasing deformation rates has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. A relative Couette Correction method

  2. See (Wapperom and Webster 1999)

  3. See Cogswell analysis in Rothstein and McKinley (1999)

References

  • Aboubacar M, Webster MF (2001) A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows. J Non-Newt Fluid Mech 98(2–3):83–106

    Article  CAS  Google Scholar 

  • Aguayo JP, Tamaddon-Jahromi HR, Webster MF (2008) Excess pressure-drop estimation in contraction and expansion flows for constant shear-viscosity, extension strain-hardening fluids. J Non-Newt Fluid Mech 153(2–3):157–176. doi:10.1016/j.jnnfm.2008.05.004

    Article  CAS  Google Scholar 

  • Baird DG, Huang J (2006) Elongational viscosity measurements using a semi-hyperbolic die. Appl Rheol 16(6):312–320

    CAS  Google Scholar 

  • Baird DG, Chan TW, McGrady CD, Mazahir SM (2010) Evaluation of the use of a semi-hyperbolic die for measuring elongational viscosity of polymer melts. Appl Rheol 20:34900–34912

    Google Scholar 

  • Binding DM (1988) An approximate analysis for contraction and converging flows. J Non-Newt Fluid Mech 27:173–189

    Article  CAS  Google Scholar 

  • Binding DM (1991) Further considerations of axisymmetric contraction flows. J Non-Newt Fluid Mech 41:27–42

    Article  CAS  Google Scholar 

  • Binding DM, Couch MA, Walters K (1998) The pressure dependence of the shear and elongational properties of polymer melts. J Non-Newt Fluid Mech 79(2–3):137–155

    Article  CAS  Google Scholar 

  • Binding DM, Phillips PM, Phillips TN (2006) Contraction/expansion flows: the pressure drop and related issues. J Non-Newt Fluid Mech 137(1–3):31–38. doi:10.1016/j.jnnfm.2006.03.006

    Article  CAS  Google Scholar 

  • Boger DV (1987) Viscoelastic flows through contractions. Annu Rev Fluid Mech 19:157–182

    Article  Google Scholar 

  • Chilcott MD, Rallison JM (1988) Creeping flow of dilute polymer-solutions past cylinders and spheres. J Non-Newt Fluid Mech 29(1–3):381–432

    Article  CAS  Google Scholar 

  • Collier JR, Romanoschi O, Petrovan S (1998) Elongational rheology of polymer melts and solutions. J Appl Polym Sci 69(12):2357–2367

    Article  CAS  Google Scholar 

  • Debbaut B, Crochet MJ (1988) Extensional effects in complex flows. J Non-Newt Fluid Mech 30:169–184

    Article  CAS  Google Scholar 

  • Donea J (1984) A Taylor–Galerkin method for convective-transport problems. Int J Numer Methods Eng 20(1):101–119

    Article  Google Scholar 

  • Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newt Fluid Mech 72(1):31–53

    Article  CAS  Google Scholar 

  • Fuller GG, Cathey CA, Hubbard B, Zebrowski BE (1985) Extensional viscosity measurements for low-viscosity fluids. J Rheol 31:235–249

    Article  Google Scholar 

  • Hawken DM, Tamaddon-Jahromi HR, Townsend P, Webster MF (1990) A Taylor–Galerkin-based algorothim for viscous incompressible flow. Int J Numer Methods Fluids 10(3):327–351

    Article  Google Scholar 

  • James DF, Chandler GM, Armour SJ (1990) A converging channel rheometer for the measurement of extensional viscosity. J Non-Newt Fluid Mech 35(2–3):421–443

    Article  CAS  Google Scholar 

  • Kim HC, Pendse A, Collier JR (1994) Polymer melt lubricated elongational flow. J Rheol 38(4):831–845

    Article  CAS  Google Scholar 

  • Meissner J (1972) Development of a universal extensional rheometer for the uniaxial extension of polymer melts. Trans Soc Rheol 16:405–420

    Article  CAS  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33(1):1–21

    Article  CAS  Google Scholar 

  • Nguyen TH, Boger DV (1984) The influence of elasticity on die entry flows. J Rheol 28(5):654–654

    Google Scholar 

  • Nigen S, Walters K (2001) On the two-dimensional splashing experiment for Newtonian and slightly elastic liquids. J Non-Newt Fluid Mech 97(2–3):233–250. doi:10.1016/s0377-0257(00)00221-4

    Article  CAS  Google Scholar 

  • Oom A, Pettersson A, Taylor JRN, Stading M (2008) Rheological properties of kafirin and zein prolamins. J Cereal Sci 47(1):109–116

    Article  CAS  Google Scholar 

  • Rothstein JP, McKinley GH (1999) Extensional flow of a polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion. J Non-Newt Fluid Mech 86(1–2):61–88

    Article  CAS  Google Scholar 

  • Rothstein JP, McKinley GH (2001) The axisymmetric contraction-expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J Non-Newt Fluid Mech 98(1):33–63

    Article  CAS  Google Scholar 

  • Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK (1991) Measurement of extensional viscosity of polymer-solutions. J Non-Newt Fluid Mech 40(3):271–280

    Article  CAS  Google Scholar 

  • Stading M, Bohlin L (2000) Measurements of extensional flow properties of semi-solid foods in contraction flow. Proceedings of the 2nd International Symposium on Food Rheology and Structure 2:117–120

    Google Scholar 

  • Stading M, Bohlin L (2001) Contraction flow measurements of extensional properties. Trans Nordic Rheol Soc 8/9:147–150

    Google Scholar 

  • Szabo P, Rallison JM, Hinch EJ (1997) Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube. J Non-Newt Fluid Mech 72(1):73–86. doi:10.1016/s0377-0257(97)00023-2

    Article  CAS  Google Scholar 

  • Tamaddon-Jahromi HR, Webster MF, Walters K (2010) Predicting numerically the large increases in extra pressure drop when boger fluids flow through axisymmetric contractions. Nat Scie 2(1):1–11

    Google Scholar 

  • Tamaddon Jahromi HR, Webster MF, Williams R (2011) Excess pressure drop and drag calculations for strain-hardening fluids with mild shear-thinning: contraction and falling sphere problems. J Non-Newt Fluid Mech 166:939–950

    Article  CAS  Google Scholar 

  • Walters K, Webster MF (2003) The distinctive CFD challenges of computational rheology. Int J Numer Method Fluid 43(5):577–596. doi:10.1002/fld.522

    Article  Google Scholar 

  • Wapperom P, Webster MF (1998) A second-order hybrid finite-element/volume method for viscoelastic flows. J Non-Newt Fluid Mech 79:405–431

    Article  CAS  Google Scholar 

  • Wapperom P, Webster MF (1999) Simulation for viscoelastic flow by a finite volume/element method. Comput Meth Appl Mech Eng 180(3–4):281–304

    Article  Google Scholar 

  • Webster MF, Matallah H, Sujatha KS (2005a) Sub-cell approximations for viscoelastic flows-filament stretching. J Non-Newt Fluid Mech 126:187–205

    Article  CAS  Google Scholar 

  • Webster MF, Tamaddon-Jahromi HR, Aboubacar M (2005b) Time-dependent algorithms for viscoelastic flow: finite element/volume schemes. Numer Meth Part Differ Equ 21(2):272–296. doi:10.1002/num.20037

    Article  Google Scholar 

  • White SA, Gotsis AD, Baird DG (1987) Review of the entry flow problem—experimental and numerical. J Non-Newt Fluid Mech 24(2):121–160

    Article  CAS  Google Scholar 

  • Wikström K, Bohlin L (1999a) Extensional flow studies of wheat flour dough. I. Experimental method for measurements in contraction flow geometry and application to flours varying in breadmaking performance. J Cereal Sci 29(3):217–226

    Article  Google Scholar 

  • Zatti D, Wiklund J, Vignali G, Stading M (2009) Determination of velocities profiles in hyperbolic contraction using ultrasound velocity profiling. Annu Trans Nordic Rheol Soc 17:277–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyström, M., Tamaddon Jahromi, H.R., Stading, M. et al. Numerical simulations of Boger fluids through different contraction configurations for the development of a measuring system for extensional viscosity. Rheol Acta 51, 713–727 (2012). https://doi.org/10.1007/s00397-012-0631-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0631-0

Keywords

Navigation