Skip to main content
Log in

Planar elongation of soft polymeric networks

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A new test fixture for the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks with application towards pressure-sensitive adhesives (PSAs). The concept of this new geometry is to elongate a tube-like sample by keeping the perimeter constant. To validate this new technique, soft polymeric networks of poly(propylene oxide) (PPO) were investigated during deformation. Particle tracking and video recording were used to detect to what extent the imposed strain rate and the sample perimeter remained constant. It was observed that, by using an appropriate choice of initial sample height, perimeter, and thickness, the planar stretch ratio will follow \(\lambda(t) = h(t)/h_0= \exp({\dot{\varepsilon}} t)\), with h(t) being the height at time t and \({\dot{\varepsilon}}\) the imposed constant strain rate. The perimeter would decrease by a few percent only, which is found to be negligible. The ideal planar extension in this new fixture was confirmed by finite element simulations. Analysis of the stress difference, σ zz  − σ xx , showed a network response similar to that of the classical neo-Hookean model. As the Deborah number was increased, the stress difference deviated more from the classical prediction due to the dynamic structures in the material. A modified Lodge model using characteristic parameters from linear viscoelastic measurements gave very good stress predictions at all Deborah numbers used in the quasi-linear regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The τ ij in Hassager et al. (1999) are the negative of σ ij here.

References

  • Bach A, Rasmussen HK, Longin P, Hassager O (2002) Growth of non-axisymmetric disturbances of the free surface in the filament stretch rheometer: experiments and simulation. J Non-Newton Fluid Mech 108:163

    Article  MATH  CAS  Google Scholar 

  • Ball R, Doi M, Edwards S, Warner M (1981) Elasticity of entangled networks. Polymer 22(8):1010–1018

    Article  CAS  Google Scholar 

  • Bernstein EKB, Zapas L (1963) Study of stress relaxation with finite strain. Trans Soc Rheol 7:391–410

    Article  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1: fluid dynamics. Whiley Interscience, New York

    Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a cross-linking pdms with imbalanced stoichiometry. J Rheol 31(8):683

    Article  CAS  ADS  Google Scholar 

  • Currie P (1982) Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss–Bird kinetic theory models. J Non-Newton Fluid Mech 11:53–68

    Article  MATH  CAS  Google Scholar 

  • Fetters L, Lohse D, Richter D, Witten T, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27(17):4639–4647

    Article  CAS  ADS  Google Scholar 

  • Flory P (1941) Molecular size distribution in three dimensional polymers. iii. Tetrafunctional branching units. J Am Chem Soc 63(11):3096–3100

    Article  CAS  Google Scholar 

  • Gao Z, Nahrup JS, Mark JE, Sakr A (2003) Poly(dimethylsiloxane) coatings for controlled drug release. i. preparation and characterization of pharmaceutically acceptable materials. J Appl Polym Sci 90(3):658–666. http://dx.doi.org/10.1002/app.12700

    Article  CAS  Google Scholar 

  • Hansen R, Skov AL, Hassager O (2008) Constitutive equation for polymer networks with phonon fluctuations. Phys Rev E 77(1):011, 802–6. http://link.aps.org/abstract/PRE/v77/e011802

    Article  Google Scholar 

  • Hassager O, Kristensen SB, Larsen JR, Neergaard J (1999) Inflation and instability of a polymeric membrane. J Non-Newton Fluid Mech 88(1–2):185–204

    Article  MATH  CAS  Google Scholar 

  • Jensen M, Bach A, Hassager O, Skov A (2009) Linear rheology of cross-linked polypropylene oxide as a pressure sensitive adhesive. Int J Adhes Adhes 29:687–693

    Article  CAS  Google Scholar 

  • Kaye A (1962) College of aeronautics. Cranheld Note no 134

  • Larsen AL, Hansen K, Sommer-Larsen P, Hassager O, Bach A, Ndoni S, Jørgensen M (2003) Elastic properties of nonstoichiometric reacted pdms networks. Macromolecules 36:10063

    Article  CAS  ADS  Google Scholar 

  • Larsen AL, Sommer-Larsen P, Hassager O (2004) Some experimental results for the end-linked polydimethylsiloxane network system. e-Polymers 050(050):1–18

    Google Scholar 

  • Laun HM, Schuch H (1989) Transient elongational viscosities and drawability of polymer melts. J Rheol 33(1):119

    Article  CAS  ADS  Google Scholar 

  • Macosko CW, Miller DR (1976) A new derivation of average molecular weights of nonlinear polymers. Macromolecules 9(2):199

    Article  CAS  PubMed  ADS  Google Scholar 

  • Marcelo A, Villar M, Valles E (1996) Influence of pendant chains on mechanical properties of model poly(dimethylsiloxane) networks. 2. Viscoelastic properties. Macromolecules 29:4081–4089

    Article  ADS  Google Scholar 

  • Marín JMR, Rasmussen HK (2009) Lagrangian finite element method for the simulation of k-bkz fluids with third order accuracy. J Non-Newton Fluid Mech 156:177–188

    Article  Google Scholar 

  • Meissner J (1987) Polymer melt elongation, methods, results, and recent developements. Polym Eng Sci 27(8):537

    Article  CAS  Google Scholar 

  • Miller DR, Macosko CW (1976) A new derivation of post gel properties of network polymers. Macromolecules 9(2):206

    Article  CAS  ADS  Google Scholar 

  • Mortensen K (1996) Structural studies of aqueous solutions of PEO-PPO-PEO triblock copolymers, their micellar aggregates and mesophases; a small-angle neutron scattering study. J Phys Condens Matter 8:103–124

    Article  ADS  Google Scholar 

  • Noone R, Goldwyn R, McGrath M, Spear S, Evans G (2007) 50th anniversary plastic surgery research council panel on the future of academic plastic surgery. Plast Reconstr Surg 120(6):1709

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen HK (1999) Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models. J Non-Newton Fluid Mech 84:217–232

    Article  MATH  CAS  MathSciNet  Google Scholar 

  • Rasmussen HK (2000) Lagrangian viscoelastic flow computations using Rivlin-Sawyers constitutive model. J Non-Newton Fluid Mech 92:227–243

    Article  MATH  CAS  Google Scholar 

  • Rasmussen HK (2002) Lagrangian viscoelastic flow computations using a generalized molecular stress function model. J Non-Newton Fluid Mech 106:107–120

    Article  MATH  CAS  Google Scholar 

  • Rasmussen HK, Christensen JH, Gøttsche S (2000) Inflation of polymer melts into elliptic and circular cylinders. J Non-Newton Fluid Mech 93(2–3):245–263

    Article  MATH  CAS  Google Scholar 

  • Sridhar T, Tirtaatmadja V, Nguyen D, Gupta R (1991) Measurement of extensional viscosity of polymer solutions. J Non-newton Fluid Mech 40(3):271–280

    Article  CAS  Google Scholar 

  • Urayama K (2008) Network topology–mechanical properties relationships of model elastomers. Polym J(8):669–678

  • Venkataraman S, Coyne L, Chambon F, Gottlieb M, Winter H (1989) Critical extent of reaction of a Polydimethylsiloxane polymer network. Polymer 30(12):2222–2226

    Article  CAS  Google Scholar 

  • Villar M, Bibbó M, Valles E (1996) Influence of pendant chains on mechanical properties of model poly(dimethylsiloxane) networks. 1. analysis of the molecular structure of the network. Macromolecules 29:4072–4080

    Article  CAS  ADS  Google Scholar 

  • Wagner M, Schaeffer J (1993) Rubbers and polymer melts: Universal aspects of nonlinear stress–strain relations. J Rheol 37:643

    Article  CAS  ADS  Google Scholar 

  • Wagner M, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45(6):1387

    Article  CAS  ADS  Google Scholar 

  • Wagner MH, Schaeffer J (1994) Assessment of non-linear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516

    Article  CAS  Google Scholar 

  • Wang S, Mark JE (1992) Unimodal and bimodal networks of poly(dimethyl siloxane) in pure shear. J Polymer Science: Part B: Polymer Physics 30:801–807

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J Rheol 30(2):367

    Article  CAS  ADS  Google Scholar 

  • Xing X, Goldbart PM, Radzihovsky L (2007) Thermal fluctuations and rubber elasticity. Phys Rev Lett 98(7):075, 502–504

    Article  Google Scholar 

Download references

Acknowledgements

M. K. Jensen thanks Coloplast A/S and the Graduate School of Polymer Science for financial support. A. L. Skov is grateful for the financial support from the Danish Research Council for Technology and Production Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Hassager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, M.K., Hassager, O., Rasmussen, H.K. et al. Planar elongation of soft polymeric networks. Rheol Acta 49, 1–13 (2010). https://doi.org/10.1007/s00397-009-0383-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0383-7

Keywords

Navigation