Skip to main content
Log in

Viscoelastic Moduli and Path-Dependent Hardness Across Four Decades of Timescale in Semicrystalline Polymers from Berkovich Nanoindentation

  • Quantifying Rate Sensitive Deformation Measured from Continuous Indentation
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Berkovich nanoindentation was used to characterize viscoelastic and viscoplastic deformations in the semicrystalline polymers, poly(ether ether ketone) (PEEK) and low density polyethylene (LDPE). The quasistatic experiments generated viscoelastic moduli over four decades in frequency and hardness over more than four decades of indentation strain rate. These semicrystalline polymer results augment analogous results previously obtained from the amorphous polymers, poly(methyl methacrylate), polycarbonate, and polystyrene. Although nanoindentation viscoelastic moduli were all systematically higher than those from conventional measurements, viscoelastic moduli from nanoindentation and conventional measurements followed the same trends with frequency, which indicated that both types of measurements are sensitive to the same microphysical processes giving rise to the viscoelasticity. Differences in the path dependence of hardness were observed between polymers and attributed to differences in polymer glass transition temperatures. Flow stress versus strain rate data were also calculated from hardness versus indentation strain rate data and compared to literature values. Flow stress versus strain rate obtained from both nanoindentation and conventional uniaxial experiments agreed very closely. Collectively, the comparisons between nanoindentation and conventional measurements over wide timescales further confirmed that viscoelastic and viscoplastic deformations characterized by Berkovich nanoindentation can be related back to conventional measurements and have similar mechanistic interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.C. Fischer-Cripps, Nanoindentation, 2nd edn. (Springer, New York, 2004).

    Book  Google Scholar 

  2. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  3. N. Fujisawa and M.V. Swain, J. Mater. Res. 23, 637 (2008).

    Article  Google Scholar 

  4. B. Tang and A.H.W. Ngan, J. Mater. Res. 18, 1141 (2003).

    Article  Google Scholar 

  5. T. Jin, X. Niu, G. Xiao, Z. Wang, Z. Zhou, G. Yuan, and X. Shu, Polym. Test. 41, 1 (2015).

    Article  Google Scholar 

  6. C.C. White, M.R. Vanlandingham, P.L. Drzal, N.K. Chang, and S.H. Chang, J. Polym. Sci. Part B (Polym. Phys.) 43, 1812 (2005).

    Article  Google Scholar 

  7. R.S. Lakes, Viscoelastic Materials (Cambridge University Press, New York, 2009).

    Book  Google Scholar 

  8. Y.-T. Cheng and C.-M. Cheng, J. Mater. Res. 20, 1046 (2005).

    Article  Google Scholar 

  9. J.E. Jakes, R.S. Lakes, and D.S. Stone, J. Mater. Res. 27, 463 (2012).

    Article  Google Scholar 

  10. J.E. Jakes, R.S. Lakes, and D.S. Stone, J. Mater. Res. 27, 475 (2012).

    Article  Google Scholar 

  11. A. Strojny, X. Xia, A. Tsou, and W.W. Gerberich, J. Adhes. Sci. Technol. 12, 1299 (1998).

    Article  Google Scholar 

  12. W. M. Mook and W. W. Gerberich, in Fundamenatal Nanoindentation Nanotribology IV, 2007, edited by E. Le Bourhis, D. J. Morris, M. L. Oyen, R. Schwaiger, and T. Straedler (Materials Research Society Symposium Proceedings, Warrendale, 2008), pp. 21–26.

  13. B. Wolf and M. Goken, Zeitschrift Fur Met. 96, 1247 (2005).

    Google Scholar 

  14. M. Hardiman, T.J. Vaughan, and C.T. McCarthy, Polym. Test. 52, 157 (2016).

    Article  Google Scholar 

  15. D. Tabor, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 192, 247 (1948).

    Google Scholar 

  16. D. Tabor, Rev. Phys. Technol. 1, 145 (1970).

    Article  Google Scholar 

  17. D.M. Marsh, Proc. R. Soc. Lond. A Math. Phys. Sci. 279, 420 (1964).

    Google Scholar 

  18. K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  19. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  20. Z.H. Melgarejo-Pinto, Plastic Deformation in Zirconium Based Metallic Glasses via Nanoindentation (The University of Wisconsin-Madison, 2016).

    Google Scholar 

  21. D.S. Stone and K.B. Yoder, J. Mater. Res. 9, 2524 (1994).

    Article  Google Scholar 

  22. A.A. Elmustafa and D.S. Stone, Mater. Lett. 57, 1072 (2003).

    Article  Google Scholar 

  23. G. Swallowe and S. Lee, J. Mater. Sci. 41, 6280 (2006).

    Article  Google Scholar 

  24. J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, and R.R. Adharapurapu, Int. J. Solids Struct. 43, 2318 (2006).

    Article  Google Scholar 

  25. O.A. Hasan, M.C. Boyce, X.S. Li, and S. Berko, J. Polym. Sci. Part B Polym. Phys. 31, 185 (1993).

    Article  Google Scholar 

  26. D.H. Ender, J. Appl. Phys. 39, 4877 (2003).

    Article  Google Scholar 

  27. C.M.R. Dunn and S. Turner, Polymer (Guildf). 15, 451 (1974).

    Article  Google Scholar 

  28. Y.Y. Wang, H. Nakanishi, Y.C. Jean, and T.C. Sandreczki, J. Polym. Sci. Part B Polym. Phys. 28, 1431 (1990).

    Article  Google Scholar 

  29. P.J. Rae, E.N. Brown, and E.B. Orler, Polymer (Guildf). 48, 598 (2007).

    Article  Google Scholar 

  30. J. Capodagli and R. Lakes, Rheol. Acta 47, 777 (2008).

    Article  Google Scholar 

  31. M.F. Tambwe, D.S. Stone, A.J. Griffin, H. Kung, Y. Cheng Lu, and M. Nastasi, J. Mater. Res. 14, 407 (1999).

    Article  Google Scholar 

  32. A.A. Elmustafa and D.S. Stone, J. Mech. Phys. Solids 51, 357 (2003).

    Article  Google Scholar 

  33. J.E. Jakes, C.R. Frihart, J.F. Beecher, R.J. Moon, and D.S. Stone, J. Mater. Res. 23, 1113 (2008).

    Article  Google Scholar 

  34. A.A. Ogale and R.L. McCullough, Compos. Sci. Technol. 30, 185 (1987).

    Article  Google Scholar 

  35. M. Sumita, T. Ookuma, K. Miyasaka, and K. Ishikawa, J. Appl. Polym. Sci. 27, 3059 (1982).

    Article  Google Scholar 

  36. D.S. Stone, K.B. Yoder, and W.D. Sproul, J. Vac. Sci. Technol. A Vac. Surf. Film. 9, 2543 (1991).

    Article  Google Scholar 

  37. J.E. Jakes, J. Mater. Sci. 53, 4814 (2018).

    Article  Google Scholar 

  38. D.S. Stone, J.E. Jakes, and A.A. Elmustafa, JOM (2024). https://doi.org/10.1007/s11837-024-06556-9.

    Article  Google Scholar 

  39. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Nat. Methods 9, 676 (2012).

    Article  Google Scholar 

  40. J.H. Strader, S. Shim, H. Bei, W.C. Oliver, and G.M. Pharr, Philos. Mag. 86, 5285 (2006).

    Article  Google Scholar 

  41. B.J. Briscoe, L. Fiori, and E. Pelillo, J. Phys. D Appl. Phys. 31, 2395 (1998).

    Article  Google Scholar 

  42. G. Feng and A.H.W. Ngan, J. Mater. Res. 17, 660 (2002).

    Article  Google Scholar 

  43. C.A. Tweedie and K.J. Van Vliet, J. Mater. Res. 21, 3029 (2006).

    Article  Google Scholar 

  44. J.E. Jakes and D. Stauffer, J. Mater. Res. 36, 2189 (2021).

    Article  Google Scholar 

  45. P. Nikaeen, D. Depan, and A. Khattab, Nanomaterials 9, 1357 (2019).

    Article  Google Scholar 

  46. G. Odegard, T. Gates, and H. Herring, Exp. Mech. 45, 130 (2005).

    Article  Google Scholar 

  47. G.Z. Voyiadjis, A. Samadi-Dooki, and L. Malekmotiei, Polym. Test. 61, 57 (2017).

    Article  Google Scholar 

  48. N. Bouaita, S.J. Bull, J.F. Palacio, and J.R. White, Polym. Eng. Sci. 46, 1160 (2006).

    Article  Google Scholar 

  49. S.L. Rosen, Fundamental Principles of Polymeric Materials, 2nd edn. (Wiley, New York, 1993).

    Google Scholar 

  50. T. Chudoba and N.M. Jennett, J. Phys. D Appl. Phys. 41, 215407 (2008).

    Article  Google Scholar 

  51. S. Fulco, S. Wolf, J.E. Jakes, Z. Fakhraai, and K.T. Turner, J. Mater. Res. 36, 2176 (2021).

    Article  Google Scholar 

  52. J.L. Jordan, D.T. Casem, J.M. Bradley, A.K. Dwivedi, E.N. Brown, and C.W. Jordan, J. Dyn. Behav. Mater. 2, 411 (2016).

    Article  Google Scholar 

  53. M.F. Omar, H.M. Akil, and Z.A. Ahmad, Mater. Sci. Eng. A 538, 125 (2012).

    Article  Google Scholar 

  54. M. Xu, G. Huang, S. Feng, G.J. McShane, and W.J. Stronge, Polymers (Basel) 8, 77 (2016).

    Article  Google Scholar 

  55. A.A. Elmustafa, S. Kose, and D.S. Stone, J. Mater. Res. 22, 926 (2007).

    Article  Google Scholar 

  56. G. Kermouche, J.L. Loubet, and J.M. Bergheau, Mech. Mater. 40, 271 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the U.S. Department of Agriculture, Forest Service. We acknowledge the machine shop at the Forest Products Laboratory for machining the PEEK specimens. We also acknowledge Ken Smith from the Forest Products Laboratory for helping to perform PEEK DMA experiments. DSS acknowledges funding by the United States National Science Foundation Directorate for Engineering (CMMI-1232731), United States Forest Service (18-JV-11111129-036), and Wisconsin Alumni Research Foundation (MSN215857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Jakes.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 284 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakes, J.E., O’dell, J. & Stone, D.S. Viscoelastic Moduli and Path-Dependent Hardness Across Four Decades of Timescale in Semicrystalline Polymers from Berkovich Nanoindentation. JOM 76, 2956–2969 (2024). https://doi.org/10.1007/s11837-024-06551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06551-0

Navigation