Skip to main content
Log in

Microstructure of shear-thickening concentrated suspensions determined by flow-USANS

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Reversible shear thickening in colloidal suspensions is a consequence of the formation of hydroclusters due to the dominance of short-ranged lubrication hydrodynamic interactions at relatively high shear rates. Here, we develop and demonstrate a new method of flow-ultra small angle neutron scattering to probe the colloidal microstructure under steady flow conditions on length scales suitable to characterize the formation of hydroclusters. Results are presented for a model near hard-sphere colloidal suspension of 260 nm radius (10% polydisperse) sterically stabilized silica particles in poly(ethylene glycol) at shear rates in the shear thinning and shear thickening regime for dilute, moderately concentrated, and concentrated (ordered) suspensions. Hydrocluster formation is observed as correlated, broadly distributed density fluctuations in the suspension with a characteristic length scale of a few particle diameters. An order–disorder transition is observed to be coincident with shear thickening for the most concentrated sample, but the shear-thickened state shows hydrocluster formation. These structural observations are correlated to the behavior of the shear viscosity and discussed within the framework of theory, simulation, and prior experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackerson BJ, Hayter JB, Clark NA et al (1986) Neutron-scattering from charge stabilized suspensions undergoing shear. J Chem Phys 84:2344–2349

    Article  ADS  CAS  Google Scholar 

  • Ackerson BJ, Dekruif CG, Wagner NJ et al (1989) Comparison of small shear-flow rate small wave vector static structure factor data with theory. J Chem Phys 90:3250–3253

    Article  ADS  CAS  Google Scholar 

  • Barker JG, Glinka CJ, Moyer JJ et al (2005) Design and performance of a thermal-neutron double-crystal diffractometer for USANS at NIST. J Appl Crystallogr 38:1004–1011

    Article  CAS  Google Scholar 

  • Barnes HA (1989) Shear-thickening (Dilatancy) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33:329–366

    Article  ADS  CAS  Google Scholar 

  • Bender JW, Wagner NJ (1995) Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci 172:171–184

    Article  CAS  Google Scholar 

  • Bender J, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 40:899–916

    Article  ADS  CAS  Google Scholar 

  • Bergenholtz J, Brady JF, Vicic M (2002) The non-Newtonian rheology of dilute colloidal suspensions. J Fluid Mech 456:239–275

    Article  MATH  ADS  CAS  Google Scholar 

  • Bhatia SR (2005) Ultra-small-angle scattering studies of complex fluids. Curr Opin Colloid Interface Sci 9:404–411

    Article  CAS  Google Scholar 

  • Bossis G, Brady JF (1989) The rheology of Brownian suspensions. J Chem Phys 91:1866–1874

    Article  ADS  CAS  Google Scholar 

  • Brady JF (1996) Model hard-sphere dispersions: statistical mechanical theory, simulations, and experiments. Curr Opin Colloid Interface Sci 1:472–480

    Article  CAS  Google Scholar 

  • Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear-flow by numerical-simulation. J Fluid Mech 155:105–129

    Article  ADS  Google Scholar 

  • Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157

    Article  ADS  Google Scholar 

  • Brady JF, Morris JF (1997) Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J Fluid Mech 348:103–139

    Article  MATH  ADS  CAS  Google Scholar 

  • Catherall AA, Melrose JR, Ball RC (2000) Shear thickening and order–disorder effects in concentrated colloids at high shear rates. J Rheol 44:1–25

    Article  ADS  CAS  Google Scholar 

  • Chen LB, Chow MK, Ackerson BJ et al (1994) Rheological and microstructural transitions in colloidal crystals. Langmuir 10:2817–2829

    Article  CAS  Google Scholar 

  • Decker MJ, Halbach CJ, Nam CH et al (2007) Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos Sci Technol 67:565–578

    Article  CAS  Google Scholar 

  • Dekruif CG, Briels WJ, May RP et al (1988) Hard-sphere colloidal silica dispersions—the structure factor determined with sans. Langmuir 4:668–676

    Article  CAS  Google Scholar 

  • Dhaene P, Mewis J, Fuller GG (1993) Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J Colloid Interface Sci 156:350–358

    Article  CAS  Google Scholar 

  • Fischer C, Plummer CJG, Michaud V et al (2007) Pre- and post-transition behavior of shear-thickening fluids in oscillating shear. Rheol Acta 46:1099–1108

    Article  CAS  Google Scholar 

  • Gopalakrishnan V, Zukoski CF (2004) Effect of attractions on shear thickening in dense suspensions. J Rheol 48:1321–1344

    Article  ADS  CAS  Google Scholar 

  • Groenewold J, Kegel WK (2001) Anomalously large equilibrium clusters of colloids. J Phys Chem B 105:11702–11709

    Article  CAS  Google Scholar 

  • Hoekstra H, Vermant J, Mewis J et al (2002) Rheology and structure of suspensions in liquid crystalline hydroxypropylcellulose solutions. Langmuir 18:5695–5703

    Article  CAS  Google Scholar 

  • Hoekstra H, Mewis J, Narayanan T et al (2005) Multi length scale analysis of the microstructure in sticky sphere dispersions during shear flow. Langmuir 21:11017–11025

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions.1. Observation of a flow instability. Trans Soc Rheol 16:155–173

    Article  CAS  Google Scholar 

  • Hoffman RL (1998) Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol 42:111–123

    Article  ADS  CAS  Google Scholar 

  • Johnson SJ, Dekruif CG, May RP (1988) Structure factor distortion for hard-sphere dispersions subjected to weak shear-flow—small-angle neutron-scattering in the flow-vorticity plane. J Chem Phys 89:5909–5921

    Article  ADS  CAS  Google Scholar 

  • Kim MH, Glinka CJ (2006) Ultra small angle neutron scattering study of the nanometer to micrometer structure of porous Vycor. Microporous Mesoporous Mater 91:305–311

    Article  CAS  Google Scholar 

  • Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900

    Article  CAS  Google Scholar 

  • Krishnamurthy LN, Wagner NJ, Mewis J (2005) Shear thickening in polymer stabilized colloidal dispersions. J Rheol 49:1347–1360

    Article  ADS  CAS  Google Scholar 

  • Laun HM, Bung R, Schmidt F (1991) Rheology of extremely shear thickening polymer dispersions (Passively Viscosity Switching Fluids). J Rheol 35:999–1034

    Article  ADS  CAS  Google Scholar 

  • Laun HM, Bung R, Hess S et al (1992) Rheological and small-angle neutron-scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane poiseuille and couette-flow. J Rheol 36:743–787

    Article  ADS  CAS  Google Scholar 

  • Lee YS, Wagner NJ (2006) Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates. Ind Eng Chem Res 45:7015–7024

    Article  CAS  Google Scholar 

  • Lee YS, Wetzel ED, Wagner NJ (2003) The ballistic impact characteristics of Kevlar (R) woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Scie 38:2825–2833

    Article  CAS  Google Scholar 

  • Liberatore MW, Nettesheim F, Wagner NJ et al (2006) Spatially resolved small-angle neutron scattering in the 1–2 plane: a study of shear-induced phase-separating wormlike micelles. Phys Rev E 73:020504–020501–020504

    Google Scholar 

  • Lindner P, Oberthur RC (1984) Apparatus for the investigation of liquid-systems in a shear gradient by small-angle neutron-scattering (Sans). Rev Phys Appl 19:759–763

    CAS  Google Scholar 

  • Lootens D, Van Damme H, Hebraud P (2003) Giant stress fluctuations at the jamming transition. Phys Rev Lett 90:178301

    Article  PubMed  ADS  CAS  Google Scholar 

  • Lootens D, Hebraud P, Lecolier E et al (2004) Gelation, shear-thinning and shear-thickening in cement slurries. Oil Gas Sci Technol Rev Inst Fr Pet 59:31–40

    Article  CAS  Google Scholar 

  • Maranzano BJ, Wagner NJ (2001) The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J Rheol 45:1205–1222

    Article  ADS  CAS  Google Scholar 

  • Maranzano BJ, Wagner NJ (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117:10291–10302

    Article  ADS  CAS  Google Scholar 

  • Maranzano BJ, Wagner NJ, Fritz G et al (2000) Surface charge of 3-(trimethoxysilyl) propyl methacrylate (TPM) coated Stober silica colloids by zeta-phase analysis light scattering and small angle neutron scattering. Langmuir 16:10556–10558

    Article  CAS  Google Scholar 

  • McNeil-Watson F, Tscharnuter W, Miller J (1998) A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering (PALS). Colloids Surf A Physicochem Eng Asp 140:53–57

    Article  CAS  Google Scholar 

  • Melrose JR, Ball RC (2004) Continuous shear thickening transitions in model concentrated colloids—the role of interparticle forces. J Rheol 48:937–960

    Article  ADS  CAS  Google Scholar 

  • Melrose JR, vanVliet JH, Ball RC (1996) Continuous shear thickening and colloid surfaces. Phys Rev Lett 77:4660–4663

    Article  PubMed  ADS  CAS  Google Scholar 

  • Newstein MC, Wang H, Balsara NP et al (1999) Microstructural changes in a colloidal liquid in the shear thinning and shear thickening regimes. J Chem Phys 111:4827–4838

    Article  ADS  CAS  Google Scholar 

  • O’Brien VT, Mackay ME (2000) Stress components and shear thickening of concentrated hard sphere suspensions. Langmuir 16:7931–7938

    Article  CAS  Google Scholar 

  • Phung TN, Brady JF, Bossis G (1996) Stokesian dynamics simulation of Brownian suspensions. J Fluid Mech 313:181–207

    Article  ADS  CAS  Google Scholar 

  • Pusey PN, Vanmegen W (1986) Phase-behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342

    Article  ADS  CAS  Google Scholar 

  • Rastogi SR, Wagner NJ, Lustig SR (1996) Microstructure and rheology of polydisperse, charged suspensions. J Chem Phys 104:9249–9258

    Article  ADS  CAS  Google Scholar 

  • Schelten J, Schmatz W (1980) Multiple-scattering treatment for small-angle scattering problems. J Appl Crystallogr 13:385–390

    Article  CAS  Google Scholar 

  • Schulz GV, Scholz A, Figini RV (1962) Analyse zweier charakteristischer verteilungen von polystyrol durch kolonnenfraktionierung. Makromol Chem 57:220–240

    Article  CAS  Google Scholar 

  • Shenoy SS, Wagner NJ, Bender JW (2003) E-FiRST: electric field responsive shear thickening fluids. Rheol Acta 42:287–294

    Article  CAS  Google Scholar 

  • Stradner A, Sedgwick H, Cardinaux F et al (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492–495

    Article  PubMed  ADS  CAS  Google Scholar 

  • Straty GC, Hanley HJM, Glinka CJ (1991) Shearing apparatus for neutron-scattering studies on fluids—preliminary-results for colloidal suspensions. J Stat Phys 62:1015–1023

    Article  ADS  Google Scholar 

  • Tomita M, Vandeven TGM (1984) The structure of sheared ordered lattices. J Colloid Interface Sci 99:374–386

    Article  CAS  Google Scholar 

  • Vanderwerff JC, Ackerson BJ, May RP et al (1990) Neutron-scattering from dense colloidal dispersions at high shear rates—the deformation of the structure factor in the shear plane. Physica A 165:375–398

    Article  ADS  CAS  Google Scholar 

  • Vermant J, Solomon MJ (2005) Flow-induced structure in colloidal suspensions. J Phys Condens Matter 17:R187–R216

    Article  ADS  CAS  Google Scholar 

  • Versmold H, Musa S, Dux C et al (2001) Shear-induced structure in concentrated dispersions: small angle synchrotron X-ray and neutron scattering. Langmuir 17:6812–6815

    Article  CAS  Google Scholar 

  • Versmold H, Dux C, Musa S (2002a) On the structure of charge stabilized polymer dispersions. J Mol Liq 98–9:145–162

    Article  Google Scholar 

  • Versmold H, Musa S, Bierbaum A (2002b) Concentrated colloidal dispersions: on the relation of rheology with small angle x-ray and neutron scattering. J Chem Phys 116:2658–2662

    Article  ADS  CAS  Google Scholar 

  • Versmold H, Musa S, Kubetzki H et al (2005) Stacking structure of concentrated shear ordered dispersions by two scattering methods. Langmuir 21:4324–4327

    Article  PubMed  CAS  Google Scholar 

  • Wagner NJ, Ackerson BJ (1992) Analysis of nonequilibrium structures of shearing colloidal suspensions. J Chem Phys 97:1473–1483

    Article  ADS  CAS  Google Scholar 

  • Wagner NJ, Bender JW (2004) The role of nanoscale forces in colloid dispersion rheology. MRS Bull 29:100–106

    CAS  Google Scholar 

  • Wagner NJ, Russel WB (1990) Light-scattering measurements of a hard-sphere suspension under shear. Phys Fluids A Fluid Dyn 2:491–502

    Article  ADS  CAS  Google Scholar 

  • Wagner NJ, Krause R, Rennie AR et al (1991) The microstructure of polydisperse, charged colloidal suspensions by light and neutron-scattering. J Chem Phys 95:494–508

    Article  ADS  CAS  Google Scholar 

  • Watanabe H, Yao ML, Osaki K et al (1998) Nonlinear rheology and flow-induced structure in a concentrated spherical silica suspension. Rheol Acta 37:1–6

    Article  CAS  Google Scholar 

  • Woutersen A, May RP, Dekruif CG (1993) The shear-distorted microstructure of adhesive hard-sphere dispersions—a small-angle neutron-scattering study. J Rheol 37:71–88

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Research was sponsored by the US Army Research Office and the US Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-05-2-0006. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research office, the Army Research Laboratory, or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work, as well as the assistance of Lionel Porcar and Man-Ho Kim. The authors thank Prof. Peter Schurtenberger (Uni. Fribourg) for helpful discussions about the cluster peak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman J. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalman, D.P., Wagner, N.J. Microstructure of shear-thickening concentrated suspensions determined by flow-USANS. Rheol Acta 48, 897–908 (2009). https://doi.org/10.1007/s00397-009-0351-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0351-2

Keywords

Navigation