Skip to main content
Log in

Aggregation kinetics of a concentrated colloidal suspension under oscillatory flow

  • Regular Article – Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The aggregation behavior of an attractive colloidal silica suspension under oscillatory flow is studied using rheological measurement. We show that the competition between the aggregation of the particles and the aggregate breakup under external stress leads to a non-monotonous evolution of the elastic modulus with time. Remarkably, under certain conditions, the elasticity is not an increasing function of time but exhibits a maximum. The value of the maximum of the elastic modulus depends on the applied shear amplitude and the ionic strength of the suspension. Scaling laws that describes the evolutions of the elastic modulus as a function of the salinity and of the deformation amplitude are proposed and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data are available upon request by the authors.

References

  1. W. Si, T.J. Graule, F.H. Baader, L.J. Gauckler, Direct coagulation casting of silicon carbide components. J. Am. Ceram. Soc. 82(5), 1129–1136 (1999)

    Google Scholar 

  2. J.A. Lewis, Colloidal processing of ceramics. J. Am. Ceram. Soc. 83(10), 2341–2359 (2000)

    Google Scholar 

  3. O. Ojeda-Farías, P. Hébraud, D. Lootens, M. Liard, J.M. Mendoza-Rangel, Thixotropy of reactive suspensions: the case of cementitious materials. Constr. Build. Mater. 212, 121–129 (2019)

    Google Scholar 

  4. P.F.G. Banfill, Rheology of fresh cement and concrete. Rheol. Rev. 2006, 61 (2006)

    Google Scholar 

  5. E. Brown, N.A. Forman, C.S. Orellana, H. Zhang, B.W. Maynor, D.E. Betts, J.M. DeSimone, H.M. Jaeger, Generality of shear thickening in suspensions. Nat. Mater. 9, 220–224 (2010)

    ADS  Google Scholar 

  6. L. Frunz, D. Lootens, R.J. Flatt, F. Wombacher, U. Velten, Smart polycarboxylate design for SCC in precast applications, in Design, Production and Placement of Self-Consolidating Concrete (Springer, Dordrecht, 2010), pp. 53–63

  7. M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein, P. Meakin, Universality in colloid aggregation. Nature 339(6223), 360–362 (1989)

    ADS  Google Scholar 

  8. M. Lattuada, H. Wu, M. Morbidelli, A simple model for the structure of fractal aggregates. J. Colloid Interface Sci. 268(1), 106–120 (2003)

    ADS  Google Scholar 

  9. M. Carpineti, M. Giglio, Spinodal-type dynamics in fractal aggregation of colloidal clusters. Phys. Rev. Lett. 68, 3327–3330 (1992)

    ADS  Google Scholar 

  10. R. Sarcia, P. Hébraud, Crackling of a coagulating suspension. Phys. Rev. E 72(1), 011402 (2005)

    ADS  Google Scholar 

  11. J. Vermant, M.J. Solomon, Flow-induced structure in colloidal suspensions. J. Phys. Condens. Matter 17(4), R187 (2005)

    ADS  Google Scholar 

  12. C. Selomulya, G. Bushell, R. Amal, T.D. Waite, Aggregation mechanisms of latex of different particle sizes in a controlled shear environment. Langmuir 18(6), 1974–1984 (2002)

    Google Scholar 

  13. A. Zaccone, M. Soos, M. Lattuada, H. Wu, M.U. Bäbler, M. Morbidelli, Breakup of dense colloidal aggregates under hydrodynamic stresses. Phys. Rev. E 79(6), 061401 (2009)

    ADS  Google Scholar 

  14. P. Snabre, L. Haider, M. Boynard, Ultrasound and light scattering from a suspension of reversible fractal clusters in shear flow. Eur. Phys. J. E 1(1), 41–53 (2000)

    Google Scholar 

  15. A. Zaccone, H. Wu, D. Gentili, M. Morbidelli, Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids. Phys. Rev. E 80(5), 051404 (2009)

    ADS  Google Scholar 

  16. D.L. Marchisio, M. Soos, J. Sefcik, M. Morbidelli, Role of turbulent shear rate distribution in aggregation and breakage processes. AIChE J. 52(1), 158–173 (2006)

    Google Scholar 

  17. R.C. Sonntag, W.B. Russel, Elastic properties of flocculated networks. J. Colloid Interface Sci. 116(2), 485–489 (1987)

    ADS  Google Scholar 

  18. N. Koumakis, E. Moghimi, R. Besseling, W.C.K. Poon, J.F. Brady, G. Petekidis, Tuning colloidal gels by shear. Soft Matter 11(23), 4640–4648 (2015)

    ADS  Google Scholar 

  19. J. Mewis, N.J. Wagner, Thixotropy. Adv. Colloid Interface Sci. 147, 214–227 (2009)

    Google Scholar 

  20. K. Dullaert, J. Mewis, A structural kinetics model for thixotropy. J. Nonnewton. Fluid Mech. 139(1), 21–30 (2006)

    MATH  Google Scholar 

  21. M. Liard, Suspensions concentrées: systèmes non newtoniens et thixotropie sous écoulement. Ph.D. Thesis, Université de Strasbourg (2015)

  22. R.C. Sonntag, W.B. Russel, Structure and breakup of flocs subjected to fluid stresses: I. Theory. J. Colloid Interface Sci. 115(2), 378–389 (1987)

    ADS  Google Scholar 

  23. D. Lootens, H. Van Damme, P. Hébraud, Giant stress fluctuations at the jamming transition. Phys. Rev. Lett. 90(17), 178301 (2003)

    ADS  Google Scholar 

  24. K. Dullaert, J. Mewis, Thixotropy: build-up and breakdown curves during flow. J. Rheol. 49(6), 1213–1230 (2005)

    ADS  Google Scholar 

  25. J.A. Alves Jr., J.B. Baldo, The behavior of zeta potential of silica suspensions. N. J. Glass Ceram. 4(02), 29 (2014)

    Google Scholar 

  26. R. Buscall, J.I. McGowan, A.J. Morton-Jones, The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J. Rheol. 37(4), 621–641 (1993)

    ADS  Google Scholar 

  27. E. Moghimi, A.R. Jacob, N. Koumakis, G. Petekidis, Colloidal gels tuned by oscillatory shear. Soft Matter 13(12), 2371–2383 (2017)

    ADS  Google Scholar 

  28. N. Willenbacher, Unusual thixotropic properties of aqueous dispersions of Laponite RD. J. Colloid Interface Sci. 182(2), 501–510 (1996)

    ADS  Google Scholar 

  29. F.J. Galindo-Rosales, F.J. Rubio-Hernandez, Static and dynamic yield stresses of Aerosil 200 suspensions in polypropylene glycol. Appl. Rheol. 20(2), 22787 (2010)

    Google Scholar 

  30. A. Mujumdar, A.N. Beris, A.B. Metzner, Transient phenomena in thixotropic systems. J. Nonnewton. Fluid Mech. 102(2), 157–178 (2002)

    MATH  Google Scholar 

  31. M. Wilhelm, D. Maring, H.W. Spiess, Fourier-transform rheology. Rheol. Acta 37(4), 399–405 (1998)

    Google Scholar 

  32. R.H. Ewoldt, A.E. Hosoi, G.H. McKinley, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52(6), 1427–1458 (2008)

    ADS  Google Scholar 

  33. F. Gadala-Maria, A. Acrivos, Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24(6), 799–814 (1980)

    ADS  Google Scholar 

  34. W. Philippoff, Vibrational measurements with large amplitudes. Trans. Soc. Rheol. 10(1), 317–334 (1966)

    Google Scholar 

  35. C.O. Klein, H.W. Spiess, A. Calin, C. Balan, M. Wilhelm, Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40(12), 4250–4259 (2007)

    ADS  Google Scholar 

  36. K. Hyun, M. Wilhelm, Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42(1), 411–422 (2008)

    ADS  Google Scholar 

  37. M.D. Graham, Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows. J. Rheol. 39(4), 697–712 (1995)

    ADS  MathSciNet  Google Scholar 

  38. A.S. Negi, C.O. Osuji, Physical aging and relaxation of residual stresses in a colloidal glass following flow cessation. J. Rheol. 54(5), 943–958 (2010)

    ADS  Google Scholar 

  39. D. Senis, Agrégation, gélification et sédimentation dans les suspensions colloidales et les fluides complexes. Ph.D. thesis, Université Paris VI (1998)

  40. R. Zerrouk, A. Foissy, R. Mercier, Y. Chevallier, J.-C. Morawski, Study of \(\text{ Ca}^{2+}\)-induced silica coagulation by small angle scattering. Langmuir 131(1), 20–29 (1990)

    Google Scholar 

  41. M. Galli, S. Sáringer, I. Szilágyi, G. Trefalt, A simple method to determine critical coagulation concentration from electrophoretic mobility. Colloids Interfaces 4(2), 20 (2020)

    Google Scholar 

  42. C.O. Metin, R.T. Bonnecaze, L.W. Lake, C.R. Miranda, Q.P. Nguyen, Aggregation kinetics and shear rheology of aqueous silica suspensions. Appl. Nanosci. 4(2), 169–178 (2014)

    ADS  Google Scholar 

  43. M. Lattuada, H. Wu, P. Sandkühler, J. Sefcik, M. Morbidelli, Modelling of aggregation kinetics of colloidal systems and its validation by light scattering measurements. Chem. Eng. Sci. 59(8–9), 1783–1798 (2004)

    Google Scholar 

  44. A. Zaccone, J.J. Crassous, M. Ballauff, Colloidal gelation with variable attraction energy. J. Chem. Phys. 138(10), 104908 (2013)

    ADS  Google Scholar 

Download references

Funding

Funding was provided by Agence Nationale de la Recherche (Grant No. 177441).

Author information

Authors and Affiliations

Authors

Contributions

All authors did conceptualization, work design, and formulation of the problem; ML performed the measurements; all authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Pascal Hébraud.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liard, M., Lootens, D. & Hébraud, P. Aggregation kinetics of a concentrated colloidal suspension under oscillatory flow. Eur. Phys. J. E 46, 49 (2023). https://doi.org/10.1140/epje/s10189-023-00294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00294-7

Navigation