Skip to main content
Log in

Influence of mixing conditions on rheological behavior and electrical conductivity of polyamides filled with carbon black

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The introduction of carbon black in a polyamide matrix allows one to obtain conductive materials because of the formation of a filler network. Resulting electrical properties depend, among others, on the processing conditions. In a first part, we investigate the influence of mixing conditions (rotor speed, temperature, mixing time) on electrical conductivity. Then, in a second part, we try to characterize the conducting network by rheological measurements and to establish relationships between rheological parameters and electrical properties. For that purpose, we propose to perform successive strain sweep experiments at constant frequency, from 0.5 to 100%, then from 100 to 0.5%, and finally, again, from 0.5 to 100%. Between two successive strain sweeps, we observe a drop in the moduli values that can be attributed to the breakdown of the carbon black network. A clear relationship is established between rheological and electrical properties of the compounds. Moreover, we propose a presentation of the rheological data that permits to rank the samples according to the strength of the carbon black network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Bar-Chaput S, Carrot C (2006) Rheology as a tool for the analysis of the dispersion of carbon filler in polymers. Rheol Acta 45:339–347

    Article  CAS  Google Scholar 

  • Bohin F, Manas-Zloczower I, Feke DL (1996) Kinetics of dispersion for sparse agglomerates in simple flows: application to silica agglomerates in silicone polymers. Chem Eng Sci 51:5193–5204

    Article  CAS  Google Scholar 

  • Boonstra BB (1977) Resistivity of unvulcanized compounds of rubber and carbon black. Rubber Chem Technol 50:194–210

    CAS  Google Scholar 

  • Boonstra BB, Medalia IA (1963) Effect of carbon black dispersion on the mechanical properties of rubber vulcanizates. Rubber Chem Technol 36:115–142

    Google Scholar 

  • Carmona F, Ravier J (2002) Electrical properties and mesostructure of carbon black-filled polymers. Carbon 40:151–156

    Article  CAS  Google Scholar 

  • Cassagnau P, Mélis F (2003) Non-linear viscoelastic behaviour and modulus recovery in silica filled polymer. Polymer 44:6607–6615

    Article  CAS  Google Scholar 

  • Cembrola RJ (1983) Resistivity and surface roughness analysis for evaluating carbon black dispersion in rubber. Rubber Chem Technol 56:233–245

    CAS  Google Scholar 

  • Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40:807–816

    Article  CAS  Google Scholar 

  • Feller JF, Petitjean E (2003) Conductive polymer composites (CPC): influence of processing conditions, shear rates and temperatures on electrical properties of poly(butylene terephtalate)/poly(amide12-b-tetramethyle-neglycol)–carbon black blends. Macromol Symp 203:309–315

    Article  CAS  Google Scholar 

  • Feller JF, Linossier I, Charpentier A (2002) Conductive polymer composites (CPC): influence of processing conditions, shear rate and temperature, on electrical properties of poly(butylenes terephtralate)/poly(ethylene-co-ethyl acrylate)-carbon black blends. Proceedings of the 19th Congress of the Polymer Processing Society, Guimaraes, CD ROM

  • Kalyon DM, Birinci E, Yazici R, Karuv B, Walsh S (2002) Electrical properties of composites as affected by the degree of mixedness of the conductive filler in the polymer matrix. Polym Eng Sci 42:1609–1617

    Article  CAS  Google Scholar 

  • Kohjiya S, Katoh A, Shimanuki J, Hasegawa T, Ikeda Y (2005) Nanostructural observation of carbon black dispersion in natural rubber matrix by three dimensional transmission electron microscopy. J Mater Sci 40:2553–2555

    Article  CAS  Google Scholar 

  • Kohjiya S, Katoh A, Suda T, Shimanuki J, Ikeda Y (2006) Visualisation of carbon black networks in rubbery matrix by skeletonisation of 3D-TEM image. Polymer 47:3298–3301

    Article  CAS  Google Scholar 

  • Lee BL (1992) Electrically conductive polymer composites and blends. Polym Eng Sci 32:36–42

    Article  Google Scholar 

  • Lux F (1993a) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci 28:285–301

    Article  CAS  Google Scholar 

  • Lux F (1993b) Percolation in electrical conductive polymer/filer systems. I. Density/filler curves according to a new thermodynamic percolation model. Polym Eng Sci 33:334–342

    Article  CAS  Google Scholar 

  • Manas-Zloczower I, Nir A, Tadmor Z (1982) Dispersive mixing in internal mixers. A theoretical model based on agglomerate rupture. Rubber Chem Technol 55:1250–1285

    CAS  Google Scholar 

  • Margolis JM (1989) Conductive polymers and plastics. Chapman & Hall, New York

    Google Scholar 

  • Medalia AI (1986) Electrical conduction in carbon black composites. Rubber Chem Technol 59:432–454

    CAS  Google Scholar 

  • Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748

    Article  CAS  Google Scholar 

  • Payne AR (1965) Reinforcement of elastomers. Interscience, New York

    Google Scholar 

  • Pécastaings G (2005) Contribution à l’étude et à la modélisation de la mésostructure de composites polymères-noir de carbone. Thèse de Doctorat, Université Bordeaux

  • Pötschke P, Bhattacharyya AR, Janke A (2003) Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 44:8061–8069

    Article  Google Scholar 

  • Pötschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969

    Article  Google Scholar 

  • Ravier J, Houzé F, Carmona F, Schneegans O, Saadaoui H (2001) Mesostructure of polymer/carbon black composites observed by conductive probe atomic force microscopy. Carbon 39:287–324

    Article  Google Scholar 

  • Rwei SP, Feke DL, Manas-Zloczower I (1991) Characterization of agglomerate dispersion by erosion in simple shear flow. Polym Eng Sci 31:558–562

    Article  CAS  Google Scholar 

  • Scurati A, Feke DL, Manas-Zloczower I (2002) Model and analysis for kinetics of agglomerate erosion in simple shear flows. Meeting of the ACS Rubber Division, Savannah, Georgia

  • Sichel EK (1982) Carbon black—polymer composites. Marcel Dekker, New York

    Google Scholar 

  • Thongruang W, Spontak RJ, Balik CM (2002) Bridged double percolation in conductive polymer composites: an electrical conductivity, morphology and mechanical property study. Polymer 43:3717–3725

    Article  CAS  Google Scholar 

  • Vergnes B, Della Valle G, Colonna P (2003) Rheological properties of biopolymers and applications to cereal processing. In: Galetunk G, Breslauer KJ (eds) Characterization of cereals and flours. Marcel Dekker, New York, pp 209–265

    Google Scholar 

  • Wan Y, Xiong C, Yu J, Wen D (2005) Effect of processing parameters on electrical resistivity and thermo-sensitive properties of carbon-black/styrene-butadiene-rubber composite membranes. Compos Sci Technol 65:1769–1779

    Article  CAS  Google Scholar 

  • Wu G, Zheng Q (2004) Estimation of the agglomeration structure for conductive particles and fiber-filled high-density polyethylene through dynamic rheological measurements. J Polym Sci B Polym Phys 42:1199–1205

    Article  CAS  Google Scholar 

  • Wu G, Asai S, Sumita M, Hattori T, Higuchi R, Washiyama J (2000) Estimation of flocculation structure in filled polymer composites by dynamic rheological measurements. Colloid Polym Sci 278:220–228

    Article  CAS  Google Scholar 

  • Wu G, Lin J, Zheng Q, Zhang M (2006) Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene. Polymer 47:2442–2447

    Article  CAS  Google Scholar 

  • Yu G, Zhang MQ, Zeng HM (1998) Carbon black filled polyolefine as a positive temperature coefficient material: effect of composition, processing and filler treatment. J Appl Polym Sci 70:559–566

    Article  CAS  Google Scholar 

  • Yu J, Zhang LQ, Rogunova M, Summers J, Hiltner A, Baer E (2005) Conductivity of polyolefins filled with high-structure carbon black. J Appl Polym Sci 98:1799–1805

    Article  CAS  Google Scholar 

  • Yui H, Wu G, Sano H, Sumita M, Kino K (2006) Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47:3599–3608

    Article  CAS  Google Scholar 

  • Yurekli K, Krishnamoorti R, Tse MF, McElrath KO, Tsou AH, Wang HC (2001) Structure and dynamics of carbon black-filled elastomers. J Polym Sci B Polym Phys 39:256–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Vergnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leboeuf, M., Ghamri, N., Brulé, B. et al. Influence of mixing conditions on rheological behavior and electrical conductivity of polyamides filled with carbon black. Rheol Acta 47, 201–212 (2008). https://doi.org/10.1007/s00397-007-0232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0232-5

Keywords

Navigation