Skip to main content
Log in

Rheological properties of branched polystyrenes: nonlinear shear and extensional behavior

  • Original contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Nonlinear shear and uniaxial extensional measurements on a series of graft-polystyrenes with varying average numbers and molar masses of grafted side chains are presented. Step-strain measurements are performed to evaluate the damping functions of the melts in shear. The damping functions show a decreasing dependence on strain with an increase in mass fraction of grafted side chains. Extensional viscosities of the melts of graft-polystyrenes exhibit a growing strain hardening with increasing average number of grafted side chains as long as the side branches have a sufficient molar mass to be entangled. Graft-polystyrenes with side arms below the critical molar mass M c for entanglements of linear polystyrene but above the entanglement molar mass M e of linear polystyrene (M e < M w,br < M c) still show a distinct strain hardening. With decreasing molar mass of the grafted side chains (M w,br < M e) the nonlinear-viscoelastic properties of the graft-polystyrene melts approach the behavior for a linear polystyrene with comparable polydispersity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Ferri D, Lomellini PJ (1999) Melt rheology of randomly branched polystyrenes. J Rheol 43:1355–1372

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Gabriel C, Münstedt H (1999) Creep recovery behavior of metallocene linear low-density polyethylenes. Rheol Acta 38:393–403

    Article  CAS  Google Scholar 

  • Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) Effect of long branches on the rheology of polyproylene. J Rheol 48:895–914

    Article  CAS  Google Scholar 

  • Grigo U, Kircher K, Müller PR (1996) Polycarbonates. In: Bottenbruch L (ed) Engineering thermoplastics: polycarbonates, polyacetals, polyesters, cellulose esters. Carl Hanser Verlag, Munich

    Google Scholar 

  • Haug PK (2000) Polystyrol-Pfropfpolymere definierter Struktur als Modellsystem für Langkettenverzweigungen in Polyolefinen. Doctoral Thesis, University of Stuttgart

  • Heino EL, Lehtinen A, Tanner J, Seppälä J (1992) Theoretical and Applied Rheology. In: Proceedings of the XIth international congress on rheology, pp 360–362

  • Hepperle J (2003) Einfluss der molekularen Struktur auf rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen. Doctoral Thesis, University Erlangen-Nürnberg

  • Hepperle J, Münstedt H, Haug PK, Eisenbach CD (2005) Rheological properties of branched polystyrenes—linear viscoelastic behavior. Rheol Acta (in print)

  • Hingmann R, Marczinke BL (1994) Shear and elongational flow properties of polypropylene melts. J Rheol 38:573–587

    Article  CAS  Google Scholar 

  • Khan SA, Prud’homme RK, Larson RG (1987) Comparison of the rheology of polymer melts in shear, and biaxial and uniaxial extensions. Rheol Acta 26:144–151

    Article  CAS  Google Scholar 

  • Kurzbeck, S (1999) Dehnrheologische Eigenschaften von Polyolefinschmelzen und Korrelationen mit ihrem Verarbeitungsverhalten beim Folienblasen und Thermoformen, Doctoral thesis, University Erlangen-Nürnberg

  • Kurzbeck S, Oster F, Münstedt H, Nguyen TQ, Gensler RJ (1999) Rheological properties of two polypropylenes with different molecular structure. J Rheol 43:359–374

    Article  CAS  Google Scholar 

  • Larson RG (1985) Nonlinear shear relaxation modulus for a linear low-density polyethylene. J Rheol 29:823–831

    Article  Google Scholar 

  • McLeish TCB, Allgaier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottière B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Heenan RK, Johnson JM, Kant R, Read DJ, Young RN (1999) Dynamics of entangled H-polymers: theory, rheology, and neutron-scattering. Macromolecules 32:6734–6758

    Article  CAS  Google Scholar 

  • Münstedt H (1979) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23:421–436

    Article  Google Scholar 

  • Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24:847–867

    Article  Google Scholar 

  • Münstedt H, Laun HM (1981) Elongational properties and molecular structure of polyethylene melts. Rheol Acta 20:211–221

    Article  Google Scholar 

  • Papanastasiou AC, Scriven LE, Macosko CW (1983) An integral constitutive equation for mixed flows: viscoelastic characterization. J Rheol 27:387–410

    Article  CAS  Google Scholar 

  • Pearson DS, Mueller SJ, Fetters LJ, Hadjichristidis N (1983) Comparison of the rheological properties of linear and star-branched polyisoprenes in shear and elongational flows. J Polym Sci Polym Phys Ed 21:2287–2298

    Article  CAS  Google Scholar 

  • Soskey PR, Winter HH (1984) Large step shear strain experiments with parallel-disk rotational rheometers. J Rheol 28:625–645

    Article  CAS  Google Scholar 

  • Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37:827–846

    Article  CAS  Google Scholar 

  • Wagner MH (1976) Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol Acta 17:136–142

    Article  Google Scholar 

  • Wagner MH (1979) Zur Netzwerktheorie von Polymer-Schmelzen. Rheol Acta 18:33–50

    Article  CAS  Google Scholar 

  • Wagner MH, Laun HM (1978) Nonlinear shear creep and constrained elastic recovery of a LDPE melt. Rheol Acta 17:138–148

    Article  CAS  Google Scholar 

  • Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Münstedt H, Langouche F (2000) The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the German Research Foundation (DFG) (grant numbers Mu 1336/2-1 and Mu 1336/2-3) is gratefully acknowledged. J.H. wants to thank Prof. Dr. M. H. Wagner for the source code of the program for the damping function calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Münstedt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hepperle, J., Münstedt, H. Rheological properties of branched polystyrenes: nonlinear shear and extensional behavior. Rheol Acta 45, 717–727 (2006). https://doi.org/10.1007/s00397-005-0031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0031-9

Keywords

Navigation