Skip to main content
Log in

Negative wake in the uniform flow past a cylinder

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The upstream/downstream streamline shift and the associated negative wake generation (streamwise velocity overshoot in the wake) in a viscoelastic flow past a cylinder are studied in this paper, for the Oldroyd-B, UCM, PTT, and FENE-CR fluids, using the Discrete Elastic Viscous Split Stress Vorticity (DEVSS-ω) scheme (Dou HS, Phan-Thien N (1999). The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-ω) formulation. J Non-Newtonian Fluid Mech 87:47–73). The numerical algorithm is a parallelized unstructured Finite Volume Method (FVM), running under a distributed computing environment through the Parallel Virtual Machine (PVM) library. It is demonstrated that both the normal stress and its gradient are responsible for the negative wake generation and streamline shifting. Fluid extensional rheology plays an important role in the generation of the negative wake. The negative wake can occur in flows where the fluid extensional viscosity does not increase rapidly with strain rate. The formation of the negative wake does not depend on whether the streamlines undergo an upstream or a downstream shift. Shear-thinning viscosity weakens the velocity overshoot and while shear-thinning first normal stress coefficient enhances the velocity overshoot. Wall proximity is not necessary for the velocity overshoot; however, it enhances the strength of the negative wake. For the Oldroyd-B fluid, the ratio of the solvent viscosity to the zero-shear viscosity plays an important role in the streamline shift. In addition, mesh dependent behaviour of normal stresses along the centreline at high De in most cylinder/sphere simulations is due to the convection of normal stress from the cylinder to the wake, which results in the maximum of the normal stress being located off the centreline by a short distance at high De.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4a–e.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10a–c.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17a–d.
Fig. 18e–h.
Fig. 19a–d.
Fig. 20e–h.
Fig. 21a–d.
Fig. 22e–h.
Fig. 23a–d.
Fig. 24e–h.

Similar content being viewed by others

References

  • Alves MA, Pinho FT, Oliveira PJ (2001) The flow of viscoelastic fluid past a cylinder: finite-volume high-resolution methods. J Non-Newtonian Fluid Mech 97:207–232

    Article  CAS  Google Scholar 

  • Arigo MT, McKinley GH (1998) An experimental investigation of negative wakes behind spheres settling in a shear-thinning viscoelastic fluid. Rheol Acta 37:307–327

    Article  CAS  Google Scholar 

  • Arigo MT, Rajagopalan D, Shapley N, McKinley GH (1995) Sedimentation of a sphere through an elastic fluid. Part 1. Steady motion. J Non-Newtonian Fluid Mech 60:225–257

    Article  CAS  Google Scholar 

  • Azaiez J, Guenette R, Ait-Kadi A (1996) Numerical simulation of viscoelastic flows through a planar contraction. J Non-Newtonian Fluid Mech 62: 253–277

    Article  CAS  Google Scholar 

  • Baaijens HPW, Peters GWM, Baaijens FPT, Meijer HEH (1995) Viscoelastic flow past a confined cylinder of a polyisobutylene solution. J Rheol 39:1243–1277

    Article  CAS  Google Scholar 

  • Baaijens FPT, Selen SHA, Baaijens HPW, Peters GWM, Meijer HEH (1997) Viscoelastic flow past a confined cylinder of a low density polyethylene melt. J Non-Newtonian Fluid Mech 68:173–203

    CAS  Google Scholar 

  • Baliga BR, Patankar SV (1980) A new finite element formulation for convection-diffusion problems. Numer Heat Trans 3:393–409

    Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Vol.1: Fluid mechanics, 2nd edn. Wiley, New York

  • Bisgaard C (1983) Velocity fields around spheres and bubbles investigated by laser-Doppler anemometry. J Non-Newtonian Fluid Mech 12:283–302

    Article  CAS  Google Scholar 

  • Broadbent JM, Mena B (1974) Slow flow of an elastico-viscous fluid past cylinders and spheres. Chem Eng J 8:11–19

    Article  CAS  Google Scholar 

  • Bush MB (1993) The stagnation flow behind a sphere. J Non-Newtonian Fluid Mech 49:103–122

    Article  CAS  Google Scholar 

  • Bush MB (1994) On the stagnation flow behind a sphere in a shear-thinning viscoelastic liquid. J Non-Newtonian Fluid Mech 55:229–247

    Article  CAS  Google Scholar 

  • Caola AE, Joo YL, Armstrong RC, Brown RA (2001) Highly parallel time integration of viscoelastic flows. J. Non-Newtonian Fluid Mech 100:191–216

    Article  CAS  Google Scholar 

  • Carew EOA, Townsend P (1991) Slow visco-elastic flow past a cylinder in a rectangular channel, Rheol Acta 30:58–64

    CAS  Google Scholar 

  • Chauvière C, Owens RG (2001) A new spectral element method for the reliable computation of viscoelastic flow. Comput Meth Appl Mech Engrg 190:3999–4018

    Article  Google Scholar 

  • Chilcott MD, Rallison JM (1988) Creeping flow of dilute polymer solutions past cylinders and spheres. J Non-Newtonian Fluid Mech 29:381–432

    Article  CAS  Google Scholar 

  • Chmielewski C, Nichols KL, Jayaraman K (1990) A comparison of the drag coefficients of spheres translating in corn-syrup-based and polybutene-based Boger fluids. J Non-Newtonian Fluid Mech 35:37–49

    Article  CAS  Google Scholar 

  • Dou HS, Phan-Thien N (1998) Parallelization of an unstructured finite volume implementation with PVM: viscoelastic flow around a cylinder. J Non-Newtonian Fluid Mech 77:21–51

    Article  CAS  Google Scholar 

  • Dou HS, Phan-Thien N (1999) The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-ω) formulation. J Non-Newtonian Fluid Mech 87:47–73

    Article  CAS  Google Scholar 

  • Dou HS, Phan-Thien N (2001) Numerical difficulties at high elasticity for the viscoelastic flow past a confined cylinder. Int J Comput Engng Sci 2:249–266

    Article  Google Scholar 

  • Fan Y (1999) Private communication

  • Fan Y, Crochet MJ (1995) High-order finite element methods for steady viscoelastic flows. J Non-Newtonian Fluid Mech 57:283–311

    Article  CAS  Google Scholar 

  • Fan Y, Tanner RI, Phan-Thien N (1999) Galerkin/least-square finite-element methods for steady viscoelastic flows. J Non-Newtonian Fluid Mech 84:233–256

    Article  CAS  Google Scholar 

  • Guenette R, Fortin M (1995) A new mixed finite element method for computing viscoelastic flows. J Non-Newtonian Fluid Mech 60:27–52

    Article  CAS  Google Scholar 

  • Happel J, Brenner H (1983) Low Reynolds number hydrodynamics with special applications to particulate media. M. Nijhoff, Hingham, MA, USA, Boston, pp 286–357

  • Harlen OG (2000) The wake behind a sphere sedimenting in a viscoelastic fluid. In: Binding DM, Hudson NE, Mewis J, Piau J-M, Petrie CJS, Townsend P, Wagner MH, Walters KW (eds) Proceedings of the 13th International Congress on Rheology, vol 2. British Society of Rheology, Glasgow, pp 288–290

  • Hassager O (1979) Negative wake behind bubbles in non-Newtonian liquids. Nature 279:402–403

    Google Scholar 

  • Hu HH, Joseph DD (1990) Numerical simulation of viscoelastic flow past a cylinder. J Non-Newtonian Fluid Mech 37:347–377

    Article  CAS  Google Scholar 

  • Huang PY, Feng J (1995) Wall effects on the flow of viscoelastic fluids around a circular cylinder. J Non-Newtonian Fluid Mech 60:179–198

    Article  CAS  Google Scholar 

  • Huilgol RR, Phan-Thien N (1997) Fluid mechanics of viscoelasticity: general principles, constitutive modelling and numerical techniques. Rheology series, vol 6. Elsevier, Amsterdam

    Google Scholar 

  • Jin H, Phan-Thien N, Tanner RI (1991) A finite element analysis of the flow past a sphere in a cylindrical tube: PTT fluid model. Comput Mech 8: 409–422

    Google Scholar 

  • Koniuta A, Adler PM, Piau JM (1980) Flow of dilute polymer solutions around circular cylinders. J Non-Newtonian Fluid Mech 7:101–106

    Article  CAS  Google Scholar 

  • Liu AW, Bornside DE, Armstrong RC, Brown RA (1998) Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: comparisons of predictions for microstructure and flow Fields. J Non-Newtonian Fluid Mech 77:153–190

    Article  CAS  Google Scholar 

  • Lunsmann WJ, Genieser L, Armstrong RC, Brown RA (1993) Finite element analysis of steady viscoelastic flow around a sphere in a tube: calculations with constant viscosity models. J Non-Newtonian Fluid Mech 48:63–99

    Google Scholar 

  • Luo XL (1998) An incremental difference formulation for viscoelastic flows and high resolution FEM solutions at high Weissenberg numbers. J Non-Newtonian Fluid Mech 79:57–75

    Article  CAS  Google Scholar 

  • Manero O, Mena B (1981) On the slow flow of viscoelastic liquids past a circular cylinder. J Non-Newtonian Fluid Mech 9:379–387

    Article  CAS  Google Scholar 

  • McKinley GH, Armstrong RC, Brown RA (1993) The wake instability in viscoelastic flow past confined circular cylinders. Phil Trans R Soc Lond A 344:265–304

    Google Scholar 

  • Mena B, Caswell B (1974) Slow flow of an elastico-viscous fluid past an immersed body. Chem Eng J 8:125–134

    Article  Google Scholar 

  • Mitsoulis E (1998) Numerical simulation of confined flow of polyethylene melts around a cylinder in a planar channel. J Non-Newtonian Fluid Mech 76:327–350

    Article  CAS  Google Scholar 

  • Oliveira PJ, Pinho FT, Pinto GA (1998) Numerical simulation of non-linear elastic flows with a general collocated finite-volume method. J Non-Newtonian Fluid Mech 79:1–43

    Article  CAS  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

  • Phan-Thien N, Dou HS (1999) Viscoelastic flow past a cylinder: drag coefficient. Comput Meth Appl Mech Eng 180:243–266

    Article  Google Scholar 

  • Prakash C, Patankar SV (1985) A control volume-based finite-element method for solving the Navier-Stokes equations using equal-order velocity-pressure interpolation. Num Heat Trans 8: 259–280

    Google Scholar 

  • Satrape JV, Crochet MJ (1994) Numerical simulation of the motion of a sphere in a Boger fluid. J Non-Newtonian Fluid Mech 55:91–111

    Article  CAS  Google Scholar 

  • Sigli D, Coutanceau M (1977) Effect of finite boundaries on the slow laminar isothermal flow of a viscoelastic fluid around a spherical obstacle. J Non-Newtonian Fluid Mech 2:1–21

    Article  Google Scholar 

  • Smith MD, Armstrong RC, Brown RA, Sureshkumar R (2000) Finite element analysis of stability of two-dimensional viscoelastic flows to three-dimensional perturbations. J Non-Newtonian Fluid Mech 93:203–244

    Article  CAS  Google Scholar 

  • Sun J, Phan-Thien N, Tanner RI (1996) An adaptive viscoelastic stress splitting scheme and its applications: AVSS/SI and AVSS/SUPG. J Non-Newtonian Fluid Mech 65:75–91

    Article  CAS  Google Scholar 

  • Sun J, Smith MD, Armstrong RC, Brown RA (1999) Finite element method for viscoelastic flows based on the discrete adaptive viscoelastic stress splitting and the discontinuous Galerkin method: DAVSS-G/DG. J Non-Newtonian Fluid Mech 86:281–307

    Article  CAS  Google Scholar 

  • Tirtaatmadja V, Uhlherr PHT, Sridhar T (1990) Creeping motion of spheres in fluid Ml. J Non-Newtonian Fluid Mech 35:327–337

    Article  CAS  Google Scholar 

  • Townsend P (1980) A numerical simulation of Newtonian and visco-elastic flow past stationary and rotating cylinders. J Non-Newtonian Fluid Mech 6:219–243

    Article  Google Scholar 

  • Ultman JS, Denn MM (1971) Slow viscoelastic flow past submerged objects. Chem Eng J 2:81–89

    Article  CAS  Google Scholar 

  • Walters K, Tanner RI (1992) The motion of a sphere through an elastic fluid. In: Chhabra PR, De Kee D (eds) Transport process in bubbles, drops, and particles. Hemisphere, pp 73–86

  • Warichet V, Legat V (1997) Adaptive high-order prediction of the drag correction factor for the upper-convected Maxwell fluid. J Non-Newtonian Fluid Mech 73:95–114

    Article  CAS  Google Scholar 

  • Zheng R, Phan-Thien N, Tanner RI (1991) The flow past a sphere in a cylindrical tube: effects of inertia, shear-thinning and elasticity. Rheol Acta 30:499–510

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Y. Fan for supplying the data in Table 2. They also wish to thank the referees for their helpful comments on the first manuscript of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Shu Dou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, HS., Phan-Thien, N. Negative wake in the uniform flow past a cylinder. Rheol Acta 42, 383–409 (2003). https://doi.org/10.1007/s00397-003-0293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-003-0293-z

Keywords

Navigation