Skip to main content
Log in

Scrutinizing URANS in Shedding Flows: The Case of Cylinder in Cross-Flow in the Subcritical Regime

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

To unravel the widespread perception that the RANS (Reynolds-averaged Navier-Stokes) concept is unreliable in predicting the dynamics of separated flows, we assessed the performance of two RANS closure levels, the linear eddy-viscosity (LEVM) and the second-moment (Reynolds stress, RSM) approaches in a massively separated generic flow over a bluff body. Considered is the canonical, zero-turbulence, cross-flow over an infinite cylinder with reference to our LES and the available DNS and experiments at two Reynolds numbers, Re = 3.9 × 103 and 1.4 × 105, both within the sub-critical regime with laminar separation. Both models capture successfully the vortex shedding frequency, but the low frequency modulations are detected only by the RSM. At high Reynolds numbers the RSM is markedly superior to the LEVM showing very good agreement with the LES and experimental data. The RSM, accounting naturally for the stress anisotropy and phase lag between the stress and strain eigenvectors, is especially successful in reproducing the growth rate of the turbulent kinetic energy in the initial shear layer which proved to be crucial for accurate prediction of the separation-induced transition. A scrutiny of the unsteady RANS (URANS) stress terms based on the conditional phase-averaged LES data shows a remarkable similarity of the normalized coherent and stochastic (modeled) stress components for the two Reynolds numbers considered. The mixed (cross) correlations, while non-negligible at the low Re number, diminish fast relative to the stochastic ones with increasing Reynolds number and, in the whole, are not significant to undermine the URANS concept and its applicability to high Re flows of industrial relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. A question (raised by one of the reviewers) can be posed if such a decomposition could be applicable to flows with periodic semi-deterministic structures, in view of their underlying inviscid (“mean motion”) character. While the issue is debatable, we argue that semi-deterministic periodic vortices shed from a bluff body, as well as convective cells in thermal convection and rotating flows qualify in just about every feature as coherent structures i.e. as “connected turbulent fluid mass with instantaneously phase-correlated vorticity over its spatial extent” [20, 21].

  2. The data can be downloaded from the website http://web.stanford.edu/~cantwell/. The case name is Case 0411 from the 1980-81 AFOSR Conference data library.

  3. Both RANS models here applied account for viscosity. The elliptic LEVM does that by imposing the Kolmogorov scale as the lower scale bound, which is known to be insufficient for treating transitional flows. The RSM used here does that in a more comprehensive, though still semi-empirical way, using some model-adapting functions in terms of the turbulence Re number and the stress and dissipation-rate anisotropy invariants [23].

  4. The term “inadvertent” was coined by one of the Referees.

References

  1. Achenbach, E.: Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106. J. Fluid Mech. 34(4), 625–639 (1968)

    Article  Google Scholar 

  2. Afgan, I., Kahil, Y., Benhamadouche, S., Sagaut, P.: Large eddy simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers. Phys. Fluids 23:075, 101 (2011)

    Google Scholar 

  3. Benhamadouche, S., Laurence, D.: LES, coarse LES, and transient RANS comparisons on the flow across a tube bundle. Int. J. Heat Fluid Flow 24, 470–479 (2003)

    Article  Google Scholar 

  4. Bloor, M.S.: The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19(2), 290–304 (1964)

    Article  MATH  Google Scholar 

  5. Bourguet, R., Braza, M., Perrin, R., Harran, G.: Anisotropic eddy-viscosity concept for strongly detached unsteady flows. AIAA J. 45(5), 1145–1149 (2007)

    Article  Google Scholar 

  6. Breuer, M.: Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int. J. Numer. Meth. Fluids 28, 1281–1302 (1998)

    Article  MATH  Google Scholar 

  7. Breuer, M.: A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow. Int. J. Heat Fluid Flow 21, 1281–1302 (2000)

    Google Scholar 

  8. Cantwell, B., Coles, D.: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321–374 (1983)

    Article  Google Scholar 

  9. Carpy, S., Manceau, R.: Turbulence modelling of statistically periodic flows: synthetic jet into quiescent air. Int. J. Heat Fluid Flow 27(5), 756–767 (2006)

    Article  Google Scholar 

  10. Catalano, P., Wang, M., Iaccarino, G., Moin, P.: Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. Int. J. Heat Fluid Flow 24(4), 463–469 (2003)

    Article  Google Scholar 

  11. Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D.D.: A combined direct numerical simulation - particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185–207 (2006)

    Article  MATH  Google Scholar 

  12. Fadai-Ghotbi, A., Manceau, R., Borée, J: Revisiting URANS computations of the backward-facing step flow using second moment closures. Influence of the numerics. Flow Turb. Comb. 81, 395–414 (2008)

    Article  MATH  Google Scholar 

  13. Franke, R., Rodi, W., Schönung, B: Analysis of experimental vortex-shedding data with respect to turbulence modelling. 7th Symp Turb Shear Flows, 24.4.1–24.4.6 (1989)

  14. Fröhlich, J, von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aero. Sci. 44, 349–377 (2008)

    Article  Google Scholar 

  15. Gatski, T.B., Rumsey, C., Manceau, R.: Current trends in modelling research for turbulent aerodynamic flows. Phil. Trans. R. Soc. A 365, 2389–2418 (2007)

    Article  MathSciNet  Google Scholar 

  16. Girimaji, S.S.: Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. J. Appl. Mech. 73(3), 413–421 (2006)

    Article  MATH  Google Scholar 

  17. Hadžić, I., Hanjalić, K.: Separation-induced transition to turbulence: Second-moment closure modelling. Flow Turb. Comb. 63, 153–173 (2000)

    Article  MATH  Google Scholar 

  18. Hadžić, I., Hanjalić, K., Laurence, D.: Modeling the response of turbulence subjected to cyclic irrotational strain. Phys. Fluids 13(6), 1739–1747 (2001)

    Article  MATH  Google Scholar 

  19. Hanjalić, K, Popovac, M., Hadžiabdić, M: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25 (6), 1047–1051 (2004)

    Article  Google Scholar 

  20. Hussain, A.K.M.F.: Coherent structures–reality and myth. Phys. Fluids 26(10), 2816–2850 (1983)

    Article  MATH  Google Scholar 

  21. Hussain, A.K.M.F.: Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)

    Article  Google Scholar 

  22. Hussain, A.K.M.F., Reynolds, W.C.: The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41(2), 241–261 (1970)

    Article  Google Scholar 

  23. Jakirlić, S, Hanjalić, K: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139–166 (2002)

    MATH  Google Scholar 

  24. Karabelas, S.J.: Large eddy simulation of high-Reynolds number flow past a rotating cylinder. Int. J. Heat Fluid Flow 31(4), 518–527 (2010)

    Article  Google Scholar 

  25. Kravchenko, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at Re D = 3900. Phys. Fluids 12(2), 403–417 (2000)

    Article  MATH  Google Scholar 

  26. Lardeau, S., Leschziner, M.: Unsteady RANS modelling of wake-blade interaction: computational requirements and limitations. Comp. Fluids 34, 3–21 (2005)

    Article  MATH  Google Scholar 

  27. Lehmkuhl, O., Rodríguez, I, Borrell, R., Oliva, A.: Low-frequency unsteadiness in the vortex formation region of a circular cylinder. Phys. Fluids, 25:085,109 (2013)

  28. Lehmkuhl, O., Rodríguez, I, Borrell, R., Chiva, J., Oliva, A.: Unsteady forces on a circular cylinder at critical Reynolds numbers. Phys. Fluids, 26:125,110 (2014)

  29. Leschziner, M.: Statistical turbulence modelling for fluid dynamics-demystified: an introductory text for graduate engineering students. London: Imperial College Press, (2015)

  30. Lo, S.C., Hoffmann, K.A., Dietiker, J.F.: Numerical investigation of high Reynolds number flows over square and circular cylinders. J. Therm. Heat Transf. 19 (1), 72–80 (2005)

    Article  Google Scholar 

  31. Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. Flow Turb. Comb. 85, 113–138 (2009)

    Article  MATH  Google Scholar 

  32. Moussaed, C., Salvetti, M.V., Wornom, S., Koobus, B., Dervieux, A.: Simulation of the flow past a circular cylinder in the supercritical regime by blending RANS and variational-multiscale LES models. J. Fluids Struct. 47, 114–123 (2014)

    Article  Google Scholar 

  33. Ničeno, B, Hanjalić, K: Unstructured large-eddy- and conjugate heat transfer simulations of wall-bounded flows. In: Faghri, M., Sunden, B. (eds.) Modeling and Simulation of Turbulent Heat Transfer (Developments in Heat Transfer), WIT, UK (2005)

  34. Norberg, C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17, 57–96 (2003)

    Article  Google Scholar 

  35. Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids, 20:085,101 (2008)

  36. Radespiel, R., Francois, D., Hoppmann, D., Klein, S., Scholz, P., Wawrzinek, K., Lutz, T., Auerswald, T., Bange, J., Knigge, C., Raasch, S., Ubelacker, S., Hain, R., Kahler, C.J., Kelleners, P., Heinrich, R., Reuss, S., Probst, A., Knopp, T.: Simulation of wing and nacelle stall. AIAA 1830, 1–20 (2016)

    Google Scholar 

  37. Revell, A., Craft, T., Laurence, D.: Turbulence modelling of unsteady turbulent flows using the stress strain lag model. Flow Turbul. Comb. 86(1), 129–151 (2011)

    Article  MATH  Google Scholar 

  38. Rodi, W.: On the simulation of turbulent flow past bluff bodies. J. Wind Eng. Ind. Aero., 46–47:3–19 (1993)

  39. Rodríguez, I, Lehmkuhl, O., Chiva, J., Borrell, R., Oliva, A.: On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding. Int. J. Heat Fluid Flow 55, 91–103 (2015)

    Article  Google Scholar 

  40. Rosetti, G., Vaz, G., Fujarra, A.L.C.: URANS calculations for smooth circular cylinder flow in a wide range of Reynolds number: solution verification and validation. J. Fluids Engng. 134(12), 121,103–121,118 (2012)

    Article  Google Scholar 

  41. Roshko, A.: On the development of turbulent wakes from vortex streets. NACA Report No., 1191 (1954)

  42. Roshko, A.: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10(3), 345–356 (1961)

    Article  MATH  Google Scholar 

  43. Sagaut, P.: Large eddy simulation for incompressible flows. Springer-Verlag, Heidelberg (2003)

  44. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19(4), 389–447 (2004)

    Article  Google Scholar 

  45. Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theor. Comp. Fluid Dyn. 18 (6), 443–468 (2005)

    Article  MATH  Google Scholar 

  46. Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D.: CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. Tech Rep NASA/CR2014-218178 (2013)

  47. Stringer, R.M., Zang, J., Hillis, A.J.: Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers. Ocean Engng. 87, 1–9 (2014)

    Article  Google Scholar 

  48. Travin, A., Shur, M., Strelets, M., Spalart, P.: Detached-eddy simulations past a circular cylinder. Flow Turb. Comb. 63(1–4), 293–313 (1999)

    MATH  Google Scholar 

  49. Trembley, P.: Direct and large-eddy simulation of flow around a circular cylinder at subcritical Reynolds numbers. PhD, Technische Universit at Munchen (2002)

  50. Williamson, C.H.K.: The existence of two stages in the transition to three–dimensionality of a cylinder wake. Phys. Fluids 31, 3165–3168 (1988)

    Article  Google Scholar 

  51. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  52. Xu, J., Ma, H.: Applications of URANS on predicting unsteady turbulent separated flows. Acta Mech. Sin. 25, 319–324 (2009)

    Article  MATH  Google Scholar 

  53. Young, M.E., Ooi, A.: Comparative assessment of LES and URANS for flow over a cylinder at a Reynolds number of 3900. In: 16th Austr Fluid Mech Conf pp 1063–1070 (2007)

  54. Zdravkovich, M.M.: Flow around circular cylinders. Oxford University Press (2003)

Download references

Acknowledgements

This work is funded by Russian Science Foundation grant No. 14-29-00203. The computational resources are provided by Siberian Supercomputer Center SB RAS (Novosibirsk), Novosibirsk State University Computing Center (Novosibirsk) and Joint Supercomputer Center RAS (Moscow). The authors thank B. Cantwell, I. Rodríguez, O. Lehmkuhl and E. Lamballais for sharing their numerical and experimental data and the referees for many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mullyadzhanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palkin, E., Mullyadzhanov, R., Hadžiabdić, M. et al. Scrutinizing URANS in Shedding Flows: The Case of Cylinder in Cross-Flow in the Subcritical Regime. Flow Turbulence Combust 97, 1017–1046 (2016). https://doi.org/10.1007/s10494-016-9772-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9772-z

Keywords

Navigation