Skip to main content
Log in

Rheological, thermal, and mechanical properties of poly(butylene succinate) (PBS)/poly(L-lactide) (PLA) fiber biodegradable green composites

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Biodegradable green composites of poly(butylene succinate) (PBS) and poly(L-lactide) (PLA) fibers were initially melt-blended aiming to obtain balanced comprehensive properties. According to the morphological observations, the PLA fibers were uniformly embedded in the PBS matrix. Rheology measurements suggested that the incorporation of PLA fibers improved the viscoelasticity of PBS melt. The percolation network of PLA fibers was formed at content of 20 wt%. The presence of PLA fibers inhibited the crystallization and reduced the isothermal crystallization rate of PBS in the composites. Moreover, the reinforcing effect of PLA fibers on the PBS matrix was found to be very significant. The storage modulus and tensile modulus of the composite with 30 wt% PLA fibers were 74% and 94% higher than those of neat PBS, respectively. PBS/PLA fiber composites prepared by simple melt blending method displayed the combination of enhanced melt strength and modulus, while maintaining the biodegradability of PBS matrix, which is of great potential for the wider practical application of environmentally friendly polymers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  2. Schmitz L, Harada J, Ribeiro WB, Rosa DS, Brandalise RN (2023) Toughening of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): a morphological, thermal, mechanical, and degradation evaluation in a simulated marine environment. Colloid Polym Sci 301:1405–1419

    Article  CAS  Google Scholar 

  3. Yun IS, Hwang SW, Shim JK, Seo KH (2016) A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. Int J Pr Eng Man-GT 3:289–296

    Google Scholar 

  4. Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Meng F, Zhu J, Ba Z, Jiang D, Wen X, Tang T (2023) Synergistic effect of carbon nanotube on improving thermal stability, flame retardancy, and electrical conductivity of poly(butylene succinate)/piperazine pyrophosphate composites. Colloid Polym Sci 301:1529–1537

    Article  CAS  Google Scholar 

  6. Calabia BP, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, Funabashi M (2013) Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers 5:128–141

    Article  Google Scholar 

  7. Huang Z, Qian L, Yin Q, Yu N, Liu T, Tian D (2018) Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polym Test 66:319–326

    Article  CAS  Google Scholar 

  8. Feng Y, Shen H, Qu J, Liu B, He H, Han L (2011) Preparation and properties of PBS/sisal-fiber composites. Polym Eng Sci 51:474–481

    Article  CAS  Google Scholar 

  9. Wu CS, Liao HT, Jhang JJ (2013) Palm fibre-reinforced hybrid composites of poly(butylene succinate): characterisation and assessment of mechanical and thermal properties. Polym Bull 70:3443–3462

    Article  CAS  Google Scholar 

  10. Su SK, Wu CS (2011) Polyester biocomposites from recycled natural fibers: characterization and biodegradability. J Appl Polym Sci 119:1211–1219

    Article  CAS  Google Scholar 

  11. Xu X, Zhang M, Qiang Q, Song J, He W (2015) Study on the performance of the acetylated bamboo fiber/PBS composites by molecular dynamics simulation. J Compos Mater 50:1–9

    Google Scholar 

  12. Liang Z, Pan P, Bo Z, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115:3559–3567

    Article  CAS  Google Scholar 

  13. Zhou M, Yan J, Li Y, Geng C, He C, Wang K, Fu Q (2013) Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate), Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). Rsc Adv 3:26418–26426

    Article  CAS  Google Scholar 

  14. Fan D, Chang P, Lin N, Yu J, Huang J (2011) Structure and properties of alkaline lignin-filled poly(butylene succinate) plastics. Iran Polym J 20:3–14

    CAS  Google Scholar 

  15. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos Part B-Eng 42:1648–1656

    Article  Google Scholar 

  16. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409

    Article  CAS  Google Scholar 

  17. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  18. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B-Eng 43:2883–2892

    Article  CAS  Google Scholar 

  19. Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with biobased coupling agent. Compos Part A-Appl S 37:80–91

    Article  CAS  Google Scholar 

  20. Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly (butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94:90–94

    Article  CAS  Google Scholar 

  21. Chen L, Hu K, Sun S, Jiang H, Huang D, Zhang K, Pan L, Li Y (2018) Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J Polym Sci 36:1342–1352

    Article  CAS  Google Scholar 

  22. Kahraman Y, Özdemir B, Gümüş BE, Nofar M (2023) Morphological, rheological, and mechanical properties of PLA/TPU/nanoclay blends compatibilized with epoxy-based Joncryl chain extender. Colloid Polym Sci 301:51–62

    Article  CAS  Google Scholar 

  23. Lee SH, Kim IY, Song WS (2014) Biodegradation of polylactic acid (PLA) fibers using different enzymes. Macromol Res 22:657–663

    Article  CAS  Google Scholar 

  24. Mezger TG (2020) The rheology handbook: for users of rotational and oscillatory rheometers. 5th edn. Vincentz Network, Hannover Germany, pp199

  25. Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969

    Article  CAS  Google Scholar 

  26. Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113

    Article  CAS  Google Scholar 

  27. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics J Chem Phys 9:341–351

    CAS  Google Scholar 

  28. Wang G, Guo B, Xu J, Li R (2011) Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. J Appl Polym Sci 121:59–67

    Article  CAS  Google Scholar 

  29. Li J, Qiu Z (2019) Effect of low loadings of cellulose nanocrystals on the significantly enhanced crystallization of biodegradable poly(butylene succinate-co-butylene adipate). Carbohyd Polym 205:211–216

    Article  CAS  Google Scholar 

  30. Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  31. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  32. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  33. Tan B, Qu J, Liu L, Feng Y, Hu S, Yin X (2011) Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta 525:141–149

    Article  Google Scholar 

  34. Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Composite 36:1335–1345

    Article  CAS  Google Scholar 

  35. Liu X, Li C, Xiao Y, Zhang D, Zeng W (2006) Non-isothermal crystallization kinetics and melting behaviors of poly(butylene succinate) and its copolyester modified with trimellitic imide units. J Appl Polym Sci 102:2493–2499

    Article  CAS  Google Scholar 

  36. Rohindra DR, Kuboyama K, Ougizawa T (2010) High-pressure analysis of the multiple melting endotherms of poly(ethylene succinate) and poly(butylene succinate). J Macromol Sci B 49:470–478

    Article  CAS  Google Scholar 

  37. Wang X, Zhou J, Li L (2007) Multiple melting behavior of poly(butylene succinate). Eur Polym J 43:3163–3170

    Article  CAS  Google Scholar 

  38. Kajornprai T, Sirisinha K (2021) Effect of thermal annealing on crystal evolution and multiple melting behaviors of molded poly(L-lactic acid) and poly(butylene succinate) blends upon heating investigated by TMDSC. J Therm Anal Calorim 146:2471–2480

    Article  CAS  Google Scholar 

  39. Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824

    Article  CAS  Google Scholar 

  40. Tsuji H, Ishizaka T (2001) Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(ε-caprolactone) and poly(L-lactide). Int J Biol Macromol 29:83–89

    Article  CAS  PubMed  Google Scholar 

  41. Li C, Jia S, Liu C, Tian H, Han L, Wang D, Zhang H (2023) Green composite from carbon dioxide-derived poly (propylene carbonate) and biodegradable poly (glycolic-co-lactic acid) fiber. Colloid Polym Sci 301:319–329

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the science and technology research project of Education Department of Jilin Province (JJKH20230325KJ) and Project of Jilin Provincial Science and Technology Department (20210203145SF).

Author information

Authors and Affiliations

Authors

Contributions

Junhao Li wrote the manuscript; Xiuli Wang prepared the tables; Xinwen Liang prepared the figures; Hongliang Hu collected the data; Yi Li reviewed the manuscript.

Corresponding authors

Correspondence to Yi Li or Hongliang Hu.

Ethics declarations

Ethical approval

This declaration is not applicable. This research does not involve any ethical issues.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, X., Li, Y. et al. Rheological, thermal, and mechanical properties of poly(butylene succinate) (PBS)/poly(L-lactide) (PLA) fiber biodegradable green composites. Colloid Polym Sci (2024). https://doi.org/10.1007/s00396-024-05243-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00396-024-05243-0

Keywords

Navigation