Skip to main content

Advertisement

Log in

Toughening of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): a morphological, thermal, mechanical, and degradation evaluation in a simulated marine environment

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, blends at different concentrations of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) were developed using poly(styrene-co-maleic anhydride) (AG) as a compatibilizer to improve the toughness without losing biodegradability. The blends were prepared by an extrusion process followed by injection to evaluate their morphological, thermal, and mechanical properties. Degradation in a simulated marine environment was evaluated by residual mass, morphology, and tensile strength after different exposure times. The polymer blend of these polymers showed immiscibility, and the compatibilizer promoted the interaction between the phases. The results showed an increase in impact strength from 27 to 109 J m−1 with the addition of 80 wt% of PBAT, with a significant difference in impact strength, additionally a decrease in elastic modulus from 1063 (pure PLA) to 95 MPa (PLA/PBAT/AG 20/80), accompanied by an increase in elongation at break from 2.2 to 35%, proving an increase in toughness of PLA when adding PBAT. As for the biodegradation test, the morphological results of the loss of integrity on the surface of all the compositions after 30 days in a simulated marine environment are striking, especially for the composition with 80 wt% PBAT, accompanied by a yellowing of the samples and the development of a biofilm on their surfaces. The decrease in elongation at break upon exposure showed an increase in brittleness, a characteristic behavior of the biodegradation of the samples. The highest amount of PBAT in the blends favored the degradation of PLA in a simulated marine environment during the time studied.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

Data available on request from the authors.

References

  1. Gigante V, Canesi I, Cinelli P et al (2019) Rubber toughening of polylactic acid (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): mechanical properties, fracture mechanics and analysis of ductile-to-brittle behavior while varying temperature and test speed. Eur Polymer J 115:125–137. https://doi.org/10.1016/j.eurpolymj.2019.03.015

    Article  CAS  Google Scholar 

  2. Mehmood A, Raina N, Phakeenuya V et al (2022) The current status and market trend of polylactic acid as biopolymer: awareness and needs for sustainable development. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.08.387

  3. Ashothaman A, Sudha J, Senthilkumar N (2021) A comprehensive review on biodegradable polylactic acid polymer matrix composite material reinforced with synthetic and natural fibers. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.07.047

  4. de Albuquerque TL, Marques Júnior JE, de Queiroz LP et al (2021) Polylactic acid production from biotechnological routes: a review. Int J Biol Macromol 186:933–951. https://doi.org/10.1016/j.ijbiomac.2021.07.074

    Article  CAS  PubMed  Google Scholar 

  5. Fonseca-García A, Osorio BH, Aguirre-Loredo RY et al (2022) Miscibility study of thermoplastic starch/polylactic acid blends: thermal and superficial properties. Carbohydr Polym 293:119744. https://doi.org/10.1016/j.carbpol.2022.119744

  6. Kanabenja W, Passarapark K, Subchokpool T et al (2022) 3D printing filaments from plasticized polyhydroxybutyrate/polylactic acid blends reinforced with hydroxyapatite. Addit Manuf 59:103130. https://doi.org/10.1016/j.addma.2022.103130

  7. Jian J, Xiangbin Z, Xianbo H (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Advanced Industrial and Engineering Polymer Research 3:19–26. https://doi.org/10.1016/j.aiepr.2020.01.001

    Article  Google Scholar 

  8. Jia X, Zhao K, Zhao J et al (2023) Degradation of poly(butylene adipate-co-terephthalate) films by Thermobifida fusca FXJ-1 isolated from compost. J Hazard Mater 441:129958. https://doi.org/10.1016/j.jhazmat.2022.129958

  9. Cho JY, Park SL, Kim SH et al (2022) Novel Poly(butylene adipate-co-terephthalate)-degrading Bacillus sp. JY35 from wastewater sludge and its broad degradation of various bioplastics. Waste Manage 144:1–10. https://doi.org/10.1016/j.wasman.2022.03.003

    Article  CAS  Google Scholar 

  10. Fu Y, Wu G, Bian X et al (2020) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend in freshwater with sediment. Molecules 25:3946. https://doi.org/10.3390/molecules25173946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Shi H, Cheng H et al (2022) Enhancement of the properties of poly(L-lactide)/poly(butylene adipate-co-terephthalate) blends by introduction of stereocomplex polylactide crystallites. Thermochim Acta 715:179272. https://doi.org/10.1016/j.tca.2022.179272

  12. Chen W, Qi C, Li Y, Tao H (2021) The degradation investigation of biodegradable PLA/PBAT blend: thermal stability, mechanical properties and PALS analysis. Radiat Phys Chem 180:109239. https://doi.org/10.1016/j.radphyschem.2020.109239

  13. Liu W, Zhang S, Yang K et al (2022) Preparation of graphene-modified PLA/PBAT composite monofilaments and its degradation behavior. J Market Res 20:3784–3795. https://doi.org/10.1016/j.jmrt.2022.08.125

    Article  CAS  Google Scholar 

  14. Qiu S, Zhou Y, Waterhouse GIN et al (2021) Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem 334:127487. https://doi.org/10.1016/j.foodchem.2020.127487

  15. Chen X, Zeng Z, Ju Y et al (2023) Design of biodegradable PLA/PBAT blends with balanced toughness and strength via interfacial compatibilization and dynamic vulcanization. Polymer 266:125620. https://doi.org/10.1016/j.polymer.2022.125620

  16. Paulsen E, Lema P, Martínez-Romero D, García-Viguera C (2022) Use of PLA/PBAT stretch-cling film as an ecofriendly alternative for individual wrapping of broccoli heads. Sci Hortic 304:111260. https://doi.org/10.1016/j.scienta.2022.111260

  17. Yang J, Li W, Mu B et al (2022) 3D printing of toughened enantiomeric PLA/PBAT/PMMA quaternary system with complete stereo-complexation: compatibilizer architecture effects. Polymer 242:124590. https://doi.org/10.1016/j.polymer.2022.124590

  18. Rebelo RC, Gonçalves LPC, Fonseca AC et al (2022) Increased degradation of PLA/PBAT blends with organic acids and derivatives in outdoor weathering and marine environment. Polymer 256:125223. https://doi.org/10.1016/j.polymer.2022.125223

  19. Zhou Y, Qiu S, Waterhouse GIN et al (2021) Enhancing the properties of PBAT/PLA composites with novel phosphorus-based ionic liquid compatibilizers. Mater Today Commun 27:102407. https://doi.org/10.1016/j.mtcomm.2021.102407

  20. Li X, Ai X, Pan H et al (2018) The morphological, mechanical, rheological, and thermal properties of PLA/PBAT blown films with chain extender. Polym Adv Technol 29:1706–1717. https://doi.org/10.1002/pat.4274

    Article  CAS  Google Scholar 

  21. Gexia W, Dan H, Wei Z, Junhui JI (2020) Degradation performance of typical biodegradable polyesters in seawater. gngfzxb 33:492–499. https://doi.org/10.14133/j.cnki.1008-9357.20191015001

  22. Nazareth M, Marques MRC, Leite MCA, Castro ÍB (2019) Commercial plastics claiming biodegradable status: Is this also accurate for marine environments? J Hazard Mater 366:714–722. https://doi.org/10.1016/j.jhazmat.2018.12.052

    Article  CAS  PubMed  Google Scholar 

  23. Menezes O, Roberts T, Motta G et al (2022) Performance of additively manufactured polylactic acid (PLA) in prolonged marine environments. Polym Degrad Stab 199:109903. https://doi.org/10.1016/j.polymdegradstab.2022.109903

  24. De Monte C, Locritani M, Merlino S et al (2022) An in situ experiment to evaluate the aging and degradation phenomena induced by marine environment conditions on commercial plastic granules. Polymers 14:1111. https://doi.org/10.3390/polym14061111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Delacuvellerie A, Benali S, Cyriaque V et al (2021) Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J Hazard Mater 419:126526. https://doi.org/10.1016/j.jhazmat.2021.126526

  26. Chen J, Rong C, Lin T et al (2021) Stable co-continuous PLA/PBAT blends compatibilized by interfacial stereocomplex crystallites: toward full biodegradable polymer blends with simultaneously enhanced mechanical properties and crystallization rates. Macromolecules 54:2852–2861. https://doi.org/10.1021/acs.macromol.0c02861

    Article  CAS  Google Scholar 

  27. Wang P, Wang Z, Yan T et al (2022) Mechanically robust and flame-retardant poly(lactide)/poly(butylene adipate-co-terephthalate) composites based on carbon nanotubes and ammonium polyphosphate. Int J Biol Macromol 221:573–584. https://doi.org/10.1016/j.ijbiomac.2022.09.033

    Article  CAS  PubMed  Google Scholar 

  28. Anderson G, Shenkar N (2021) Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environ Pollut 268:115364. https://doi.org/10.1016/j.envpol.2020.115364

  29. Zhang R, Du F, Jariyavidyanont K et al (2022) Glass transition temperature of poly(d,l-lactic acid) of different molar mass. Thermochim Acta 718:179387. https://doi.org/10.1016/j.tca.2022.179387

  30. Aiman MA, Ramlee NA, Mohamad Azmi MA, Tuan Sabri TNA (2022) Preparation, thermal degradation, and rheology studies for polylactic acid (PLA) and palm stearin (PS) blend: a review. Materials Today: Proceedings 63:S222–S230. https://doi.org/10.1016/j.matpr.2022.02.420

    Article  CAS  Google Scholar 

  31. Su S (2022) Compatibilization, processing and characterization of poly(butylene adipate terephthalate)/polylactide (PBAT/PLA) blends. Mater Res Express 9:025308. https://doi.org/10.1088/2053-1591/ac55c7

  32. Wellen RMR, Jaques NG, Barros ABS et al (2022) Disclosing the complex crystallization of PBAT/PLA/Babassu biocompounds through MDSC analysis. J Therm Anal Calorim 147:7299–7310. https://doi.org/10.1007/s10973-021-11058-w

    Article  CAS  Google Scholar 

  33. Botta L, Titone V, Mistretta MC et al (2021) PBAT based composites reinforced with microcrystalline cellulose obtained from softwood almond shells. Polymers 13:2643. https://doi.org/10.3390/polym13162643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Z, Liu T, Yang J et al (2022) Biomimetically structured poly(lactic acid)/poly(butylene-adipate-co-terephthalate) blends with ultrahigh strength and toughness for structural application. ACS Appl Polym Mater 4:9351–9359. https://doi.org/10.1021/acsapm.2c01606

    Article  CAS  Google Scholar 

  35. Su S (2021) “Prediction of the Miscibility of PBAT/PLA Blends” Polymers 13(14):2339. https://doi.org/10.3390/polym13142339

  36. Cobo FN, Santana H de, Carvalho GM de, Yamashita F (2021) Estudo da miscibilidade de blendas de poli (ácido lático)/poli (butileno adipato-co-tereftalato) preparadas pelo método de evaporação de solvente. Matéria (Rio J) 26: https://doi.org/10.1590/S1517-707620210002.1276

  37. Nofar M, Salehiyan R, Ciftci U et al (2020) Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Compos B: Eng 182:107661. https://doi.org/10.1016/j.compositesb.2019.107661

  38. Barbosa JDV, Azevedo JB, Araújo EM et al (2019) Bionanocomposites of PLA/PBAT/organophilic clay: preparation and characterization. Polímeros 29. https://doi.org/10.1590/0104-1428.09018

  39. Su S, Duhme M, Kopitzky R (2020) Uncompatibilized PBAT/PLA Blends: manufacturability, miscibility and properties. Materials 13:4897. https://doi.org/10.3390/ma13214897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oguz H, Dogan C, Kara D et al (2019) Development of PLA-PBAT and PLA-PBSA bio-blends: Effects of processing type and PLA crystallinity on morphology and mechanical properties. AIP Conf Proc 2055:030003. https://doi.org/10.1063/1.5084813

  41. Ko H-S, Lee S, Lee D, Jho JY (2021) Mechanical properties and bioactivity of Poly(lactic acid) composites containing poly(glycolic acid) fiber and hydroxyapatite particles. Nanomaterials (Basel) 11:249. https://doi.org/10.3390/nano11010249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giri J, Lach R, Le HH et al (2021) Structural, thermal and mechanical properties of composites of poly(butylene adipate-co-terephthalate) with wheat straw microcrystalline cellulose. Polym Bull 78:4779–4795. https://doi.org/10.1007/s00289-020-03339-5

    Article  CAS  Google Scholar 

  43. Wang X, Peng S, Chen H et al (2019) Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos B: Eng 173:107028. https://doi.org/10.1016/j.compositesb.2019.107028

  44. Sritham E, Phunsombat P, Chaishome J (2018) Tensile properties of PLA/PBAT blends and PLA fibre-reinforced PBAT composite. MATEC Web Conf 192:03014. https://doi.org/10.1051/matecconf/201819203014

    Article  CAS  Google Scholar 

  45. Garcia PS, Turbiani FRB, Baron AM et al (2018) Sericin as compatibilizer in starch/ polyester blown films. Polímeros 28:389–394. https://doi.org/10.1590/0104-1428.05117

    Article  Google Scholar 

  46. Dolgun A, Demirhan H (2017) Performance of nonparametric multiple comparison tests under heteroscedasticity, dependency, and skewed error distribution. Communications in Statistics - Simulation and Computation 46:5166–5183. https://doi.org/10.1080/03610918.2016.1146761

    Article  Google Scholar 

  47. Mileva D, Tranchida D, Gahleitner M (2018) Designing polymer crystallinity: an industrial perspective. Polymer Crystallization 1:e10009. https://doi.org/10.1002/pcr2.10009

  48. Li W, Sun C, Li C et al (2021) Preparation of effective ultraviolet shielding poly (lactic acid)/poly (butylene adipate-co-terephthalate) degradable composite film using co-precipitation and hot-pressing method. Int J Biol Macromol 191:540–547. https://doi.org/10.1016/j.ijbiomac.2021.09.097

    Article  CAS  PubMed  Google Scholar 

  49. Mistretta MC, La Mantia FP, Titone V et al (2020) Effect of ultraviolet and moisture action on biodegradable polymers and their blend. Journal of Applied Biomaterials & Functional Materials 18:2280800020926653. https://doi.org/10.1177/2280800020926653

    Article  CAS  Google Scholar 

  50. Morro A, Catalina F, Sanchez-León E, Abrusci C (2019) Photodegradation and biodegradation under thermophile conditions of mulching films based on poly(butylene adipate-co-terephthalate) and its blend with poly(lactic acid). J Polym Environ 27:352–363. https://doi.org/10.1007/s10924-018-1350-0

    Article  CAS  Google Scholar 

  51. Kijchavengkul T, Auras R, Rubino M, Alvarado E, Montero JRC, Rosales JM (2010) Atmospheric and soil degradation of aliphatic–aromatic polyester films. Polym Degrad Stab 95(2):99–107. https://doi.org/10.1016/j.polymdegradstab.2009.11.048

    Article  CAS  Google Scholar 

  52. Stloukal P, Verney V, Commereuc S, Rychly J, Matisova-Rychlá L, Pis V, Koutny M (2012) Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere 88(10):1214–1219. https://doi.org/10.1016/j.chemosphere.2012.03.072

    Article  CAS  PubMed  Google Scholar 

  53. Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y (2004) Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 55(5):763–773. https://doi.org/10.1016/j.chemosphere.2003.11.038

    Article  CAS  PubMed  Google Scholar 

  54. Webb HK, Arnott J, Crawford RJ, Ivanova EP (2012) Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers 5(1):1–18. https://doi.org/10.3390/polym5010001

    Article  CAS  Google Scholar 

  55. Beltrán-Sanahuja A, Casado-Coy N, Simó-Cabrera L, Sanz-Lázaro C (2020) Monitoring polymer degradation under different conditions in the marine environment. Environ Pollut 259:113836. https://doi.org/10.1016/j.envpol.2019.113836

  56. Correa-Pacheco ZN, Black-Solís JD, Ortega-Gudiño P et al (2020) Preparation and characterization of bio-based PLA/PBAT and cinnamon essential oil polymer fibers and life-cycle assessment from hydrolytic degradation. Polymers 12:38. https://doi.org/10.3390/polym12010038

    Article  CAS  Google Scholar 

  57. Bhagwat G, O’Connor W, Grainge I,  Palanisami T (2021) Understanding the fundamental basis for biofilm formation on plastic surfaces: role of conditioning films. Front Microbiol 12:687118. https://doi.org/10.3389/fmicb.2021.687118

  58. Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34(9):577–588. https://doi.org/10.1007/s10295-007-0234-4

    Article  CAS  PubMed  Google Scholar 

  59. Costa CZ, de Albuquerque M, CC de, Brum MC, Castro AM de (2015) Degradação Microbiológica e Enzimática De Polímeros: Uma Revisão. Quím Nova 38:259–267. https://doi.org/10.5935/0100-4042.20140293

    Article  CAS  Google Scholar 

  60. Pelegrini K, Donazzolo I, Brambilla V et al (2016) Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. J Appl Polym Sci 133. https://doi.org/10.1002/app.43290

  61. Wang X-W, Wang G-X, Huang D et al (2019) Degradability comparison of poly(butylene adipate terephthalate) and its composites filled with starch and calcium carbonate in different aquatic environments. J Appl Polym Sci 136:46916. https://doi.org/10.1002/app.46916

    Article  CAS  Google Scholar 

  62. Cristina AM, Sara F, Fausto G et al (2018) Degradation of post-consumer PLA: hydrolysis of polymeric matrix and oligomers stabilization in aqueous phase. J Polym Environ 26:4396–4404. https://doi.org/10.1007/s10924-018-1312-6

    Article  CAS  Google Scholar 

  63. Deroiné M, Le Duigou A, Corre Y-M et al (2014) Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polym Degrad Stab 108:319–329. https://doi.org/10.1016/j.polymdegradstab.2014.01.020

    Article  CAS  Google Scholar 

  64. Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65(5):2025–2031. https://doi.org/10.1128/AEM.65.5.2025-2031.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bagheri AR, Laforsch C, Greiner A, Agarwal S (2017) Fate of so-called biodegradable polymers in seawater and freshwater. Global Chall 1(4):1700048. https://doi.org/10.1002/gch2.201700048

    Article  Google Scholar 

  66. Titone V, La Mantia FP, Mistretta MC (2020) The effect of calcium carbonate on the photo-oxidative behavior of poly (butylene adipate-co-terephthalate). Macromol Mater Eng 305(10):2000358. https://doi.org/10.1002/mame.202000358

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to CAPES-PROSUP and the support of the National Council for Scientific and Technological Development (CNPQ) for the Productivity Research PQ2 scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Executor of the experiments: L. S. Provided resources: J. H. Methodology and discussion of results: D. S. R. and R. N. B. Performed the statistical analysis: L. S. and W. B. R.

Corresponding author

Correspondence to Rosmary N. Brandalise.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, L., Harada, J., Ribeiro, W.B. et al. Toughening of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): a morphological, thermal, mechanical, and degradation evaluation in a simulated marine environment. Colloid Polym Sci 301, 1405–1419 (2023). https://doi.org/10.1007/s00396-023-05157-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05157-3

Keywords

Navigation