Skip to main content
Log in

A facile preparation of biochar-anchored magnetic photocatalytic PVDF composite for water remediation

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A magnetic photocatalyst composite was obtained with an environmentally friendly approach. Controlled carbonized wastes that cannot be reused as textile materials with polymeric matrix were added to the polymeric support. The carbonization behaviors and physical properties of polymeric composites were investigated by thermal analysis, Fourier transform infrared spectroscopy, X-ray diffractometer, and transmission and scanning electron microscope analysis. Photocatalytic dye removal performances of composites were investigated in batch medium (at 25 °C and 10–150 mg/L methyl orange model pollutant). The FeCl2.4H2O-impregnated waste sample was carbonized at 350 °C, whereas this value is 400 °C for non-chemical activated samples. The biochar gained magnetic feature due to the formation of Fe3O4 crystals confirmed in diffraction patterns. Catalytic Fe-biochar prepared in a single step in a controlled manner stabilized polyvinylidene fluoride structure by phase inversion. The dye removal efficiency of the composite was investigated. Fe-biochar-PVDF composite exhibited 97.4% dye conversion under 254 nm, 30 W ultraviolet light for 30 min. It is a good example for the importance of waste recycling and the production of fine materials under low-cost conditions. Fe-biochar-PVDF composites are promising materials for use as self-cleaning membrane material in filtration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All datasets were given as raw and interpreted in this study and in the supplementary materials.

References

  1. Yi Y, Tu G, Zhao D, Tsang PE, Fang Z (2019) Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor. Chem Eng J 360:212–220. https://doi.org/10.1016/j.cej.2018.11.205

    Article  CAS  Google Scholar 

  2. Zhang L, Guo J, Huang X, Wang W, Sun P, Li Y, Han J (2019) Functionalized biochar-supported magnetic MnFe 2 O 4 nanocomposite for the removal of Pb(ii) and Cd(ii). RSC Adv 9:365–376. https://doi.org/10.1039/c8ra09061k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dong X, He L, Hu H, Liu N, Gao S, Piao Y (2018) Removal of 17Β-estradiol by using highly adsorptive magnetic biochar nanoparticles from aqueous solution. Chem Eng J 352:371–379. https://doi.org/10.1016/j.cej.2018.07.025

    Article  CAS  Google Scholar 

  4. Lingamdinne LP, Choi JS, Angaru GKR, Karri RR, Yang JK, Chang YY, Koduru JR (2022) Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations. Chemosphere 286:131776. https://doi.org/10.1016/j.chemosphere.2021.131776

    Article  CAS  PubMed  Google Scholar 

  5. Dai SJ, Zhao YC, Niu DJ, Li Q, Chen Y (2019) Preparation and reactivation of magnetic biochar by molten salt method: relevant performance for chlorine-containing pesticides abatement. J Air Waste Manag Assoc 69:58–70. https://doi.org/10.1080/10962247.2018.1510441

    Article  CAS  PubMed  Google Scholar 

  6. Wen Q, Chen Y, Rao X, Yang R, Zhao Y, Li J, Xu S, Liang Z (2022) Preparation of magnesium Ferrite-Doped magnetic biochar using potassium ferrate and seawater mineral at low temperature for removal of cationic pollutants. Biores Technol 350:126860. https://doi.org/10.1016/j.biortech.2022.126860

    Article  CAS  Google Scholar 

  7. Herath A, Navarathna C, Warren S, Perez F, Pittman CU, Mlsna TE (2022) Iron/titanium oxide-biochar (Fe2TiO5/BC): a versatile adsorbent/photocatalyst for aqueous Cr(VI), Pb2+, F- and methylene blue. J Colloid Interface Sci 614:603–616. https://doi.org/10.1016/j.jcis.2022.01.067

    Article  CAS  PubMed  Google Scholar 

  8. Pan Y, Peng Z, Liu Z, Shao B, Liang Q, He Q, Wu T, Zhang X, Zhao C, Liu Y, Ge L, He M (2022) Activation of peroxydisulfate by bimetal modified peanut hull-derived porous biochar for the degradation of tetracycline in aqueous solution. J Environ Chem Eng 10:107366. https://doi.org/10.1016/j.jece.2022.107366

    Article  CAS  Google Scholar 

  9. Welter N, Leichtweis J, Silvestri S, Sánchez PIZ, Mejía ACC, Carissimi E (2022) Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B. J Alloy Compd 901:163758. https://doi.org/10.1016/j.jallcom.2022.163758

    Article  CAS  Google Scholar 

  10. Zahedifar M, Seyedi N, Salajeghe M, Shafiei S (2020) Nanomagnetic biochar dots coated silver NPs (BCDs-Ag/MNPs): a highly efficient catalyst for reduction of organic dyes. Mater Chem Phys 246:122789. https://doi.org/10.1016/j.matchemphys.2020.122789

    Article  CAS  Google Scholar 

  11. Li W, Chen Y, Yao L, Ren X, Li Y, Deng L (2020) Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation. Desalination 478:114288. https://doi.org/10.1016/j.desal.2019.114288

    Article  CAS  Google Scholar 

  12. Huang ZH, Zhang X, Wang YX, Sun JY, Zhang H, Liu WL, Li MP, Ma XH, Xu ZL (2020) Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling. Environ Res 187:109617. https://doi.org/10.1016/j.envres.2020.109617

    Article  CAS  PubMed  Google Scholar 

  13. Zhu J, Zhou S, Li M, Xue A, Zhao Y, Peng W, Xing W (2020) PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties. J Membr Sci Res 612. https://doi.org/10.1016/j.memsci.2020.118467

  14. Sun J, Li S, Ran Z, Xiang Y (2020) Preparation of Fe3O4@TiO2 blended PVDF membrane by magnetic coagulation bath and its permeability and pollution resistance. J Market Res 9:4951–4967. https://doi.org/10.1016/j.jmrt.2020.03.014

    Article  CAS  Google Scholar 

  15. Li H, Jiang D, Huang Z, He K, Zeng G, Chen A, Yuan L, Peng M, Huang T, Chen G (2019) Preparation of silver-nanoparticle-loaded magnetic biochar/poly(dopamine) composite as catalyst for reduction of organic dyes. J Colloid Interface Sci 555:460–469. https://doi.org/10.1016/j.jcis.2019.08.013

    Article  CAS  PubMed  Google Scholar 

  16. Berkün Olgun Ö, Palas B, Atalay S, Ersöz G (2021) Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts. Chem Eng Res Des 171:421–432. https://doi.org/10.1016/j.cherd.2021.05.017

    Article  CAS  Google Scholar 

  17. Chen L, Ren X, Li Y, Hu D, Feng X, Liu Y, Zhao J (2022) High flux Fe/activated carbon membranes for efficient degradation of organic pollutants in water by activating sodium persulfate. Sep Purif Technol 285:120411. https://doi.org/10.1016/j.seppur.2021.120411

    Article  CAS  Google Scholar 

  18. Thines KR, Abdullah EC, Mubarak NM, Ruthiraan M (2017) Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renew Sustain Energy Rev 67:257–276. https://doi.org/10.1016/j.rser.2016.09.057

    Article  CAS  Google Scholar 

  19. Gumus H, Buyükkidan B (2022) Pollution removal performance of chemically functionalized textile waste biochar anchored poly ( vinylidene fluoride ) adsorbent, Journal of the Turkish Chemical Society Section A. Chemistry 9:777–792

    CAS  Google Scholar 

  20. Buonomenna MG, Golemme G, Figoli A, Drioli E (2010) Fluorinated membranes as interfaces for application in catalysis. Desalination 250:1147–1149. https://doi.org/10.1016/j.desal.2009.09.129

    Article  CAS  Google Scholar 

  21. El-Sayed SA, Mostafa ME (2014) Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers Manag 85:165–172. https://doi.org/10.1016/j.enconman.2014.05.068

    Article  Google Scholar 

  22. Zazo JA, Bedia J, Fierro CM, Pliego G, Casas JA, Rodriguez JJ (2012) Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catal Today 187:115–121. https://doi.org/10.1016/j.cattod.2011.10.003

    Article  CAS  Google Scholar 

  23. Gumus H (2020) Catalytic performance of polyvinylidene fluoride (Pvdf) supported tio2 additive at microwave conditions, Journal of the Turkish Chemical Society, Section A. Chemistry 7:361–374. https://doi.org/10.18596/jotcsa.610886

    Article  CAS  Google Scholar 

  24. Faaliyan K, Abdoos H, Borhani E, Afghahi SSS (2018) Magnetite-silica nanoparticles with core-shell structure: single-step synthesis, characterization and magnetic behavior. J Sol-Gel Sci Technol 88:609–617. https://doi.org/10.1007/s10971-018-4847-z

    Article  CAS  Google Scholar 

  25. Gumus H, Buyukkidan B (2023) A simple and green preparation route of waste textile based photocatalytic biochars for pollution removal. Chem Afr. https://doi.org/10.1007/s42250-023-00625-3

    Article  Google Scholar 

  26. Gaabour LH (2020) Analysis of Spectroscopic, Optical and magnetic behaviour of PVDF/PMMA blend embedded by magnetite (Fe3O4) nanoparticles. Opt Photonics J 10:197–209. https://doi.org/10.4236/opj.2020.108021

    Article  CAS  Google Scholar 

  27. Gumus H (2019) Performance investigation of Fe 3 O 4 blended poly (vinylidene fluoride) membrane on filtration and benzyl alcohol oxidation: evaluation of sufficiency for catalytic reactors. Chin J Chem Eng 27:314–321. https://doi.org/10.1016/j.cjche.2018.05.006

    Article  CAS  Google Scholar 

  28. Xin T, Ma M, Zhang H, Gu J, Wang S, Liu M, Zhang Q (2014) A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Appl Surf Sci 288:51–59. https://doi.org/10.1016/j.apsusc.2013.09.108

    Article  CAS  Google Scholar 

  29. O-Rak K, Phakdeepataraphan E, Bunnak N, Ummartyotin S, Sain M, Manuspiya H (2014) Development of bacterial cellulose and poly(vinylidene fluoride) binary blend system: Structure and properties. Chem Eng J 237396–402. https://doi.org/10.1016/j.cej.2013.10.032

  30. Ali MA (2014) Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst. Tetrahedron. https://doi.org/10.1016/j.tet.2014.03.024

    Article  Google Scholar 

  31. Choi GG, Jung SH, Oh SJ, Kim JS (2014) Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Process Technol 123:57–64. https://doi.org/10.1016/j.fuproc.2014.02.007

    Article  CAS  Google Scholar 

  32. Komaraiah D, Radha E, Sivakumar J, Ramana Reddy MV, Sayanna R (2020) Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt Mater 108. https://doi.org/10.1016/j.optmat.2020.110401

  33. Silva TL, Cazetta AL, Souza PSC, Zhang T, Asefa T, Almeida VC (2018) Mesoporous activated carbon fibers synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions. J Clean Prod 171:482–490. https://doi.org/10.1016/j.jclepro.2017.10.034

    Article  CAS  Google Scholar 

  34. Bhat SA, Zafar F, Mirza AU, Mondal AH, Kareem A, Haq QM, Nishat N (2020) NiO nanoparticle doped-PVA-MF polymer nanocomposites: preparation, Congo red dye adsorption and antibacterial activity. Arab J Chem 13:5724–5739. https://doi.org/10.1016/j.arabjc.2020.04.011

  35. Singh S, Perween S, Ranjan A (2021) Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J Environ Chem Eng 9:105149. https://doi.org/10.1016/j.jece.2021.105149

    Article  CAS  Google Scholar 

  36. Raj RM, Ganesan S, Suganthi S, Vignesh S, Hatamleh AA, Alnafisi BK, Venkatesan R, Raj V, Lo H-M (2023) Facile construction of cost-effective zinc-aluminium polymeric framework for efficient removal of selective both drug and dye from an aqueous medium. Chemosphere 311:137105. https://doi.org/10.1016/j.chemosphere.2022.137105

    Article  CAS  PubMed  Google Scholar 

  37. Ye Z, Chen L, Chen H, Han L, Chen Q, Wang D (2018) Α-Zirconium phosphate nanocrystals with various morphology for photocatalysis. Chem Phys Lett 709:96–102. https://doi.org/10.1016/j.cplett.2018.08.046

    Article  CAS  Google Scholar 

  38. Devi LG, Kavitha R (2016) A review on plasmonic metal-TiO 2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci 360:601–622. https://doi.org/10.1016/j.apsusc.2015.11.016

    Article  CAS  Google Scholar 

  39. Gou Y, Chen P, Yang L, Li S, Peng L, Song S, Xu Y (2021) Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129481

    Article  PubMed  Google Scholar 

  40. Sheng H, Li Q, Ma W, Ji H, Chen Ch, Zhao J (2013) Photocatalytic degradation of organic pollutants on surface anionized TiO2: common effect of anions for high hole-availability by water. Appl Catal B 138–139:212–218

    Article  Google Scholar 

  41. Xiao R, He L, Luo Z, Spinney R, Wei Z, Dionysiou DD, Zhao F (2020) An experimental and theoretical study on the degradation of clonidine by hydroxyl and sulfate radicals. Sci Total Environ 710:136333. https://doi.org/10.1016/j.scitotenv.2019.136333

  42. Xue Y, Kamali M, Yu X, AppelsL Dewil R (2023) Novel CuO/Cu2(V2O7)/V2O5 composite membrane as an efficient catalyst for the activation of persulfate toward ciprofloxacin degradation. Chem Eng J 455:140201. https://doi.org/10.1016/j.cej.2022.140201

  43. Xue Y, Guo Y, Zhang X, Kamali M, Aminabhavi TM, Appels L, Dewil R (2022) Efficient adsorptive removal of ciprofloxacin and carbamazepine using modified pinewood biochar – a kinetic, mechanistic study. Chem Eng J 450:137896. https://doi.org/10.1016/j.cej.2022.137896

  44. Zhang H, Zhang C, Zhang Y, Cui P, Zhang Y, Wang L, Wang H, Gao Y (2019) P/N co-doped carbon derived from cellulose: a metal-free photothermal catalyst for transfer hydrogenation of nitroarenes. Appl Surf Sci 487:616–624. https://doi.org/10.1016/j.apsusc.2019.05.144

    Article  CAS  Google Scholar 

  45. Yang NQ, Li J, Wang YN, Ma J (2021) Investigation of photocatalytic properties based on Fe and Ce Co-doped ZnO via hydrothermal method and first principles. Mater Sci Semicond Process 131:105835. https://doi.org/10.1016/j.mssp.2021.105835

  46. Yu F, Tian F, Zou H, Ye Z, Peng C, Huang J (2021) ZnO / biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J Hazard Mater 415:125511. https://doi.org/10.1016/j.jhazmat.2021.125511

  47. Aichour A, Zaghouane-Boudiaf H, Khodja HD (2022) Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: Characterization, adsorption properties and reuse studies. Arab J Chem 15:103542. https://doi.org/10.1016/j.arabjc.2021.103542

  48. Li B, Wang H, Lan Y, Cui Y, Zhang Y, Feng Y, Pan J, Meng M, Wu C (2020) A controllable floating pDA-PVDF bead for enhanced decomposition of H2O2 and degradation of dyes. Chem Eng J 385:123907. https://doi.org/10.1016/j.cej.2019.123907

    Article  CAS  Google Scholar 

  49. Wu CJ, Maggay IV, Chiang CH, Chen W, Chang Y, Hu C, Venault A (2023) Removal of tetracycline by a photocatalytic membrane reactor with MIL-53(Fe)/PVDF mixed-matrix membrane. J Chem Eng 451:138990. https://doi.org/10.1016/j.cej.2022.138990

  50. Yang C, Wang P, Li J, Wang Q, Xu P, You S, Zheng Q, Zhang G (2021) Photocatalytic PVDF ultrafiltration membrane blended with visible-light responsive Fe(III)-TiO2 catalyst: Degradation kinetics, catalytic performance and reusability. Chem Eng J 417:129340. https://doi.org/10.1016/j.cej.2021.129340

    Article  CAS  Google Scholar 

  51. Yadav A, Sharma P, Panda AB, Shahi VK (2021) Photocatalytic TiO2 incorporated PVDF-co-HFP UV-cleaning mixed matrix membranes for effective removal of dyes from synthetic wastewater system via membrane distillation. J Environ Chem Eng 9:105904. https://doi.org/10.1016/j.jece.2021.105904

    Article  CAS  Google Scholar 

  52. Huang J, Hu J, Shi Y, Zeng G, Cheng W, Yu H, Gu Y, Shi L, Yi K (2019) Evaluation of self-cleaning and photocatalytic properties of modified g-C 3 N 4 based PVDF membranes driven by visible light. J Colloid Interface Sci 541:356–366. https://doi.org/10.1016/j.jcis.2019.01.105

    Article  CAS  PubMed  Google Scholar 

  53. Krishnan SAG, Sasikumar B, Arthanareeswaran G, László Z, Nascimben Santos E, Veréb G, Kertész S (2022) Surface-initiated polymerization of PVDF membrane using amine and bismuth tungstate (BWO) modified MIL-100(Fe) nanofillers for pesticide photodegradation. Chemosphere 304. https://doi.org/10.1016/j.chemosphere.2022.135286

Download references

Funding

This work was financially supported by the Department of Scientific Research Project at the University of Kutahya Dumlupinar with a funding number Kütahya DPU-BAP 2020–08.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have no conflicts of interest. All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Huseyin Gumus and Bulent Buyukkidan. The first draft of the manuscript was written by Huseyin Gumus and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huseyin Gumus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlight

•Magnetic photocatalytic composites were prepared by the addition of magnetic biochar obtained from waste textile remnants.

•The waste recycling provided environmental protection and fine material production at low temperatures.

•Chemical activation reduced the temperature of carbonization process by inducing the decomposition of polymeric matrix.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 981 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumus, H., Büyükkıdan, B. A facile preparation of biochar-anchored magnetic photocatalytic PVDF composite for water remediation. Colloid Polym Sci 302, 103–115 (2024). https://doi.org/10.1007/s00396-023-05177-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05177-z

Keywords

Navigation