Skip to main content
Log in

The effect of NaCl on the solution properties of a betaine-type amphiphilic polymer and its performance enhancement mechanism

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The amphiphilic random copolymer poly (AM-co-MABPS) (PAMB) was prepared by free radical polymerization with acrylamide (AM) as a hydrophilic monomer and N-methyl-N-allylhexyl benzoyl propane sulfonate (MABPS) as a hydrophobic monomer. The analysis of its structure and composition is based on FT-IR, 1HNMR, and element analyzer. The solution properties of PAMB are determined by various measurements, including a viscometer, SEM, AFM, fluorescence spectrometer, and rheometer. The results show that the hydrophobic groups introduced into PAMB can self-associate to form a spatial network structure in aqueous solution. PAMB has a lower critical association concentration in brine compared to pure water, and this effect is more pronounced in brine with a higher salinity. The solution properties of PAMB have been significantly improved in brine, and the enhancement mechanism has also been revealed. These impressive properties make this type of copolymer have the potential to chemical flooding for enhanced oil recovery in high-salinity reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Koo B, Swager TM (2017) Interfacial pressure/area sensing: dual-fluorescence of amphiphilic conjugated polymers at water interfaces [J]. ACS Macro Lett 6(2):134–138. https://doi.org/10.1021/acsmacrolett.6b00953

    Article  CAS  Google Scholar 

  2. Zhang B, Debartolo JE, Song J (2017) Shape recovery with concomitant mechanical strengthening of amphiphilic shape memory polymers in warm water [J]. ACS Appl Mater Interfaces 9(5):4450–4456. https://doi.org/10.1021/acsami.6b14167

    Article  CAS  PubMed  Google Scholar 

  3. Zheng, Y., Wang, X., Qiu, F. et al. (2019) Amphiphilic polymer to improve polyplex stability for enhanced transfection efficiency. Polym Bull 76:2471–2479.  https://doi.org/10.1007/s00289-018-2506-8

  4. Raffa P, Broekhuis AA, Picchioni F (2016) Amphiphilic copolymers based on PEG-acrylate as surface active water viscosifiers: towards new potential systems for enhanced oil recovery [J]. J Appl Polym Sci 133(42). https://doi.org/10.1002/app.44100

  5. Li YT, Zhang SF, Wang SQ et al (2020) Structure, surface tension, and rheological behaviors of hydrophobically associative polyacrylamides by self-emulsified microemulsion polymerization [J]. J Appl Polym Sci 137(41). https://doi.org/10.1002/app.49234

  6. Shi L, Zhu S, Ye Z et al (2020) Effect of microscopic aggregation behavior on polymer shear resistance [J]. J Appl Polym Sci 137(19). https://doi.org/10.1002/app.48670

  7. Mamusa M, Tempesti P et al (2019) Associative properties of poly(ethylene glycol)-poly(vinyl acetate) comb-like graft copolymers in water. [J]. Nanoscale 11(14):6635–6643. https://doi.org/10.1039/c8nr10453k

  8. Liu Z, Mendiratta S, Zhang J et al (2019) Amphiphilic polymer assisted hot water flooding towards viscous oil mobilization [J]. Ind Eng Chem Res 58(36):16552–16564. https://doi.org/10.1021/acs.iecr.9b02272

    Article  CAS  Google Scholar 

  9. Li X, Sarsenbekuly B, Yang H et al (2020) Rheological behavior of a wormlike micelle and an amphiphilic polymer combination for enhanced oil recovery [J]. Phys Fluids 32(7)

  10. Chen L, Zhu X, Wang L et al (2018) Experimental study of effective amphiphilic graphene oxide flooding for ultralow permeability reservoir [J]. Energy Fuels 32(11):11269–11278. https://doi.org/10.1021/acs.energyfuels.8b02576

    Article  CAS  Google Scholar 

  11. Scott AJ, Penlidis A (2020) Designing optimal terpolymers for enhanced oil recovery (polymer flooding) [J]. Ind Eng Chem Res 59(16):7426–7437. https://doi.org/10.1021/acs.iecr.0c00434

    Article  CAS  Google Scholar 

  12. Li L, Wenxin S, Lihua Z et al (2020) Factors affecting the performance of forward osmosis treatment for oilfield produced water from surfactant-polymer flooding [J]. J Membr Sci 615

  13. Yingzhe Du, Yangwen Z, Yanfeng Ji et al (2020) Effect of salt-resistant monomers on viscosity of modified polymers based on the hydrolyzed poly-acrylamide (HPAM): a molecular dynamics study [J]. J Mol Liq 325

  14. Kang W, Cao C, Guo S et al (2019) Mechanism of silica nanoparticles’ better-thickening effect on amphiphilic polymers in high salinity condition [J]. J Mol Liq 277:254–260. https://doi.org/10.1016/j.molliq.2018.12.092

    Article  CAS  Google Scholar 

  15. Oliveira PF, Costa JA , Oliveira LFS et al (2019) Hydrolysis and thermal stability of partially hydrolyzed polyacrylamide in high-salinity environments [J]. J Appl Polym Sci 136(29). https://doi.org/10.1002/app.47793

  16. Li Y, Ren Q (2018) Synthesis, characterization, and solution properties of a surface-active hydrophobically associating polymer [J]. J Appl Polym Sci 135. https://doi.org/10.1002/app.46569

  17. Juárez Data RM, Mattea F, Strumia MC et al (2020) Effect of including a hydrophobic comonomer on the rheology of an acrylamide-acrylic acid based copolymer [J]. J Appl Polym Sci 137(47). https://doi.org/10.1002/app.49532

  18. Tian H, Quan H, Huang Z et al (2018) pH-switchable and CO2-switchable viscoelastic fluids based on a pseudo-hydrophobically associating water-soluble polymer [J]. Fuel 227:42–47. https://doi.org/10.1016/j.fuel.2018.04.087

    Article  CAS  Google Scholar 

  19. Ma J, Yu P, Xia B et al (2019) Effect of salt and temperature on molecular aggregation behavior of acrylamide polymer [J]. e-Polymers 19(1):594–606. https://doi.org/10.1515/epoly-2019-0063

  20. Li J, Wang Q, Liu Y et al (2018) Long branched-chain amphiphilic copolymers: synthesis, properties and application in heavy oil recovery [J]. Energy Fuels 32(6):7002–7010. https://doi.org/10.1021/acs.energyfuels.8b00973

    Article  CAS  Google Scholar 

  21. Kang W, Zhu Z, Yang H et al (2017) Study on salt thickening mechanism of the amphiphilic polymer with betaine zwitterionic group by β-cyclodextrin inclusion method [J]. Colloid Polym Sci 295(10):1887–1895. https://doi.org/10.1007/s00396-017-4169-7

    Article  CAS  Google Scholar 

  22. Lin X, Wu L, Huang S, Qin Y, Qiu X, Lou H (2019) Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose. Carbohydr Polym 207:52–58. https://doi.org/10.1016/j.carbpol.2018.11.070

    Article  CAS  PubMed  Google Scholar 

  23. Yu Q, Wu X, Li Y et al (2018) Synthesis, characterization, and aqueous properties of an amphiphilic terpolymer with a novel nonionic surfmer [J]. Int J Polym Sci 1–7. https://doi.org/10.1155/2018/9231837

  24. Sun JS, Du WC, Pu XL et al (2015) Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery. Chem Pap 69:1598–1607. https://doi.org/10.1515/chempap-2015-0185

    Article  CAS  Google Scholar 

  25. Chen H, Wang ZM, Ye ZB et al (2014) The solution behavior of hydrophobically associating zwitterionic polymer in salt water [J]. J Appl Polym Sci 131(1). https://doi.org/10.1002/app.39707

  26. He Y, Alamri H, Kawelah M et al (2020) Brine-soluble zwitterionic copolymers with tunable adsorption on rocks [J]. ACS Appl Mater Interfaces 12(11):13568–13574. https://doi.org/10.1021/acsami.0c02247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Gou S, Zhou L et al (2019) Modified polyacrylamide containing phenylsulfonamide and betaine sulfonate with excellent viscoelasticity for EOR [J]. J Appl Polym Sci 136(38). https://doi.org/10.1002/app.47971

  28. Choi SK, Son HA, Kim HT et al (2017) Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles [J]. Energy Fuels 31(8):7777–7782. https://doi.org/10.1021/acs.energyfuels.7b00455

    Article  CAS  Google Scholar 

  29. Thiangtham S, Runt J et al (2018) Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility [J]. Carbohydr Polym 208:314–322. https://doi.org/10.1016/j.carbpol.2018.12.080

  30. Yang S-J, Ding X, Han B-H (2018) Conjugated microporous polymers with dense sulfonic acid groups as efficient proton conductors [J]. Langmuir 34(26):7640–7646. https://doi.org/10.1021/acs.langmuir.8b00926

    Article  CAS  PubMed  Google Scholar 

  31. Yang H, Zhang H, Zheng W et al (2020) Effect of hydrophobic group content on the properties of betaine-type binary amphiphilic polymer [J]. J Mol Liq 311

  32. Yang X, Liu J, Li P et al (2015) Self-assembly properties of hydrophobically associating perfluorinated polyacrylamide in dilute and semi-dilute solutions [J]. J Polym Res 22(6):1–7. https://doi.org/10.1007/s10965-015-0750-2

    Article  CAS  Google Scholar 

  33. Kharchenko SB, Kannan RM, Cernohous JJ et al (2003) Role of architecture on the conformation, rheology, and orientation behavior of linear, star, and hyperbranched polymer melts. 1. Synthesis and molecular characterization [J]. Macromolecules 36(2):399–406. https://doi.org/10.1021/ma0256486

  34. Qian Q, An Q, Yang Q et al (2009) Synthesis and characterization of solution-processable polyelectrolyte complexes and their homogeneous membranes. [J]. ACS Appl Mater Interfaces 1(1):90–96. https://doi.org/10.1021/am800037v

  35. Roy A, Saha S, Roy MN (2016) Study to explore host-guest inclusion complexes of cyclodextrins with biologically active molecules in aqueous environment [J]. Fluid Phase Equilib 425:252–258. https://doi.org/10.1016/j.fluid.2016.06.013

    Article  CAS  Google Scholar 

  36. Wang J, Qiu Z, Wang Y et al (2016) Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host–guest complexation [J]. Beilstein J Org Chem 12(1):50–72. https://doi.org/10.3762/bjoc.12.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frank V, Vermonden T, Nostrum CV et al (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications [J]. Biomacromol 10(12):3157–3175. https://doi.org/10.1021/bm901065f

    Article  CAS  Google Scholar 

  38. Sriamornsak P, Thirawong N, Nunthanid J et al (2008) Atomic force microscopy imaging of novel self-assembling pectin–liposome nanocomplexes [J]. Carbohyd Polym 71(2):324–329. https://doi.org/10.1016/j.carbpol.2007.05.027

    Article  CAS  Google Scholar 

  39. You K, Wen G, Skandalis A et al (2019) Effects of subphase pH and temperature on the aggregation behavior of poly(lauryl acrylate)-block-poly(N-isopropylacrylamide) at the air/water interface [J]. J Phys Chem C 123(16):10435–10442. https://doi.org/10.1021/acs.jpcc.9b01320

    Article  CAS  Google Scholar 

  40. Tian H, Quan H, Huang Z et al (2019) Polymeric and non‐crosslinked acid self‐thickening agent based on hydrophobically associating water-soluble polymer during the acid rock reaction [J]. J Appl Polym Sci 136(36). https://doi.org/10.1002/app.47907

  41. Shrestha RG, Shrestha LK, Aramaki K (2008) Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems [J]. J Colloid Interface Sci 322(2):596–604. https://doi.org/10.1016/j.jcis.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  42. Durand A (2007) Aqueous solutions of amphiphilic polysaccharides: concentration and temperature effect on viscosity [J]. Eur Polymer J 43(5):1744–1753. https://doi.org/10.1016/j.eurpolymj.2007.02.031

    Article  CAS  Google Scholar 

  43. Wei B (2015) Flow characteristics of three enhanced oil recovery polymers in porous media [J]. J Appl Polym Sci 132(10). https://doi.org/10.1002/app.41598

  44. Spildo K, Sæ El (2015) Effect of charge distribution on the viscosity and viscoelastic properties of partially hydrolyzed polyacrylamide [J]. Energy Fuels 29(9):5609–5617. https://doi.org/10.1021/acs.energyfuels.5b01066

  45. Pal N, Vajpayee M, Mandal A (2019) Cationic-nonionic mixed surfactants as EOR fluids: influence of mixed micellization and polymer association on interfacial, rheological and rock-wetting characteristics [J]. Energy Fuels 33:6048–6059. https://doi.org/10.1021/acs.energyfuels.9b00671

    Article  CAS  Google Scholar 

  46. Rezvani H, Panahpoori D, Riazi M et al (2020) A novel foam formulation by Al2O3/SiO2 nanoparticles for EOR applications: a mechanistic study [J]. J Mol Liq 304

  47. Hu X, Zhao X, Ke Y (2019) Effects of silica nanoparticle on the solution properties of hydrophobically associating polymer based on acrylamide and β-cyclodextrin [J]. J Mol Liq 296:111885. https://doi.org/10.1016/j.molliq.2019.111885

  48. Tirtaatmadja V, Tam KC, Jenkins RD (1997) Rheological properties of model alkali-soluble associative (HASE) polymers: effect of varying hydrophobe chain length [J]. Macromolecules 30(11):3271–3282. https://doi.org/10.1021/ma961202b

    Article  CAS  Google Scholar 

  49. Urayama K, Yokoyama R, Kohjiya S (2001) Viscoelastic relaxation of guest linear poly(dimethylsiloxane) in end-linked poly(dimethylsiloxane) networks [J]. Macromolecules 34(13):4513–4518. https://doi.org/10.1021/ma010167s

    Article  CAS  Google Scholar 

  50. Wyatt VT (2012) Effects of swelling on the viscoelastic properties of polyester films made from glycerol and glutaric acid [J]. J Appl Polym Sci 126(5):1784–1793. https://doi.org/10.1002/app.36908

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Scientific Research Foundation of the Education Department of Jiangxi Province, China (GJJ203104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1542 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Kou, H. The effect of NaCl on the solution properties of a betaine-type amphiphilic polymer and its performance enhancement mechanism. Colloid Polym Sci 300, 69–81 (2022). https://doi.org/10.1007/s00396-021-04927-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04927-1

Keywords

Navigation