Skip to main content
Log in

Molecular understanding of interactions, structure, and drug encapsulation efficiency of Pluronic micelles from dissipative particle dynamics simulations

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, we employ coarse-grained dissipative particle dynamics simulations with the hydrogen bonds added explicitly to study the drug encapsulation property, structure, and interactions of Pluronic L64/ibuprofen combinations. The coarse-grained simulations reveal that the computed total drug encapsulation efficiency is around 80% and the simulations show a decrease in the micelle size upon encapsulation of the drug in line with the experimental literature. The computed radial distribution functions point out that the micelle shrinkage can be caused by an increased local packing of the hydrophobic–hydrophilic units around each other, and the absence of water molecules inside the micelles when there are drug molecules present in the system. Overall, the coarse-grained DPD simulations predict the structural and drug encapsulation properties of a polymeric system consistent with the experiments, whereby bringing new insights to its molecular understanding in terms of micelle shrinkage upon inclusion of ibuprofen.

The results of this paper demonstrate that the experimental behavior of a particular drug delivery system is captured to a great extent by the coarse-grained simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170. https://doi.org/10.1016/S0079-6700(03)00015-7

    Article  CAS  Google Scholar 

  2. Riess G, Hurtrez G, Bahadur P (1985) Block copolymers, 2nd ed. Encyclopedia of Polymer Science and Engineering, vol 2. Wiley, New York

    Google Scholar 

  3. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res Dordr 24(1):1–16. https://doi.org/10.1007/s11095-006-9132-0

    Article  CAS  Google Scholar 

  4. Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. https://doi.org/10.1038/nnano.2007.387

    Article  CAS  PubMed  Google Scholar 

  5. Biswas S, Kumari P, Lakhani PM, Ghosh B (2016) Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 83:184–202. https://doi.org/10.1016/j.ejps.2015.12.031

    Article  CAS  PubMed  Google Scholar 

  6. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269. https://doi.org/10.1016/j.ejpb.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  7. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer-chemotherapy - mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46(12):6387–6392

    CAS  PubMed  Google Scholar 

  8. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  PubMed  Google Scholar 

  9. Kim SY, Shin ILG, Lee YM, Cho CS, Sung YK (1998) Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Control Release 51(1):13–22. https://doi.org/10.1016/S0168-3659(97)00124-7

    Article  CAS  PubMed  Google Scholar 

  10. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82(2-3):189–212

    Article  CAS  Google Scholar 

  11. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106. https://doi.org/10.1016/j.jconrel.2008.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic((R)) block copolymers for overcoming drug resistance in cancer. Adv Drug Deliver Rev 54(5):759–779

    Article  CAS  Google Scholar 

  13. de Oliveira EG, Machado PRL, Farias KJS, da Costa TR, Melo DMA, Lacerda AF, Fernandes-Pedrosa MD, Cornelio AM, da Silva AA (2019) Tailoring structural properties of spray-dried methotrexate-loaded poly (lactic acid)/poloxamer microparticle blends. J Mater Sci-Mater M 30(1):12. https://doi.org/10.1007/s10856-018-6214-6

    Article  CAS  Google Scholar 

  14. Rezvan G, Pircheraghi G, Bagheri R (2018) Curcumin incorporated PVA-borax dual delivery hydrogels as potential wound dressing materialsCorrelation between viscoelastic properties and curcumin release rate. J Appl Polym Sci 135(45):46734. https://doi.org/10.1002/app.46734

    Article  CAS  Google Scholar 

  15. Marcos X, Padilla-Beltran C, Bernad-Bernad MJ, Rosales-Hernandez MC, Perez-Casas S, Correa-Basurto J (2018) Controlled release of N-(2-hydroxyphenyl)-2-propylpentanamide nanoencapsulated in polymeric micelles of P123 and F127 tested as anti-proliferative agents in MDA-MB-231 cells. J Drug Deliv Sci Technol 48:403–413. https://doi.org/10.1016/j.jddst.2018.10.005

    Article  CAS  Google Scholar 

  16. Yang M, Yu T, Wang YY, Lai SK, Zeng Q, Miao BL, Tang BC, Simons BW, Ensign LM, Liu GS, Chan KWY, Juang CY, Mert O, Wood J, Fu J, McMahon MT, Wu TC, Hung CF, Hanes J (2014) Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth. Adv Healthc Mater 3(7):1044–1052. https://doi.org/10.1002/adhm.201300519

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Shi YA, Chen YZ, Ye JA, Sha XY, Fang XL (2011) Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials 32(11):2894–2906. https://doi.org/10.1016/j.biomaterials.2010.12.039

    Article  CAS  PubMed  Google Scholar 

  18. Israelachvili J (1997) The different faces of poly(ethylene glycol). Proc Natl Acad Sci U S A 94(16):8378–8379. https://doi.org/10.1073/pnas.94.16.8378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly (ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous-solutions - thermodynamics of copolymer association. Macromolecules 27(9):2414–2425. https://doi.org/10.1021/ma00087a009

    Article  CAS  Google Scholar 

  20. Linse P (1993) Micellization of poly(ethylene oxide)-poly(propylene oxide) block-copolymers in aqueous-solution. Macromolecules 26(17):4437–4449. https://doi.org/10.1021/ma00069a007

    Article  CAS  Google Scholar 

  21. Shih KC, Shen ZQ, Li Y, Kroger M, Chang SY, Liu Y, Nieh MP, Lai HM (2018) What causes the anomalous aggregation in pluronic aqueous solutions? Soft Matter 14(37):7653–7663. https://doi.org/10.1039/c8sm01096j

    Article  CAS  PubMed  Google Scholar 

  22. Frenkel D, Smit B (2001) Understanding molecular simulation2nd edn. Academic Press, Orlando, FL

    Google Scholar 

  23. Srinivas G, Discher DE, Klein ML (2004) Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nat Mater 3(9):638–644. https://doi.org/10.1038/nmat1185

    Article  CAS  PubMed  Google Scholar 

  24. Srinivas G, Pitera JW (2008) Soft patchy nanoparticles from solution-phase self-assembly of binary diblock copolymers. Nano Lett 8(2):611–618. https://doi.org/10.1021/nl073027q

    Article  CAS  PubMed  Google Scholar 

  25. Beltran-Villegas DJ, Jayaraman A (2018) Assembly of amphiphilic block copolymers and nanoparticles in solution: coarse-grained molecular simulation study. J Chem Eng Data 63(7):2351–2367. https://doi.org/10.1021/acs.jced.7b00925

    Article  CAS  Google Scholar 

  26. Kacar G, Atilgan C, Ozen AS (2010) Mapping and reverse-mapping of the morphologies for a molecular understanding of the self-assembly of fluorinated block copolymers. J Phys Chem C 114(1):370–382. https://doi.org/10.1021/jp908324d

    Article  CAS  Google Scholar 

  27. Sousa SF, Peres J, Coelho M, Vieira TF (2018) Analyzing PEGylation through molecular dynamics simulations. Chemistryselect 3(29):8415–8427. https://doi.org/10.1002/slct.201800855

    Article  CAS  Google Scholar 

  28. Loverde SM, Klein ML, Discher DE (2012) Nanoparticle shape improves delivery: rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles. Adv Mater 24(28):3823–3830. https://doi.org/10.1002/adma.201103192

    Article  CAS  PubMed  Google Scholar 

  29. De Nicola A, Hezaveh S, Zhao Y, Kawakatsu T, Roccatano D, Milano G (2014) Micellar drug nanocarriers and biomembranes: how do they interact? Phys Chem Chem Phys 16(11):5093–5105. https://doi.org/10.1039/c3cp54242d

    Article  CAS  PubMed  Google Scholar 

  30. Nie SY, Lin WJ, Yao N, Guo XD, Zhang LJ (2014) Drug release from OH-sensitive polymeric micelles with different drug distributions: insight from coarse-grained simulations. ACS Appl Mater Int 6(20):17668–17678. https://doi.org/10.1021/am503920m

    Article  CAS  Google Scholar 

  31. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160. https://doi.org/10.1209/0295-5075/19/3/001

    Article  Google Scholar 

  32. Guo XD, Tan JPK, Kim SH, Zhang LJ, Zhang Y, Hedrick JL, Yang YY, Qian Y (2009) Computational studies on self-assembled paclitaxel structures: templates for hierarchical block copolymer assemblies and sustained drug release. Biomaterials 30(33):6556–6563. https://doi.org/10.1016/j.biomaterials.2009.08.022

    Article  CAS  PubMed  Google Scholar 

  33. Posocco P, Fermeglia M, Pricl S (2010) Morphology prediction of block copolymers for drug delivery by mesoscale simulations. J Mater Chem 20(36):7742–7753. https://doi.org/10.1039/c0jm01301c

    Article  CAS  Google Scholar 

  34. Ramezani M, Shamsara J (2016) Application of DPD in the design of polymeric nano-micelles as drug carriers. J Mol Graph Model 66:1–8. https://doi.org/10.1016/j.jmgm.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  35. Nie SY, Sun Y, Lin WJ, Wu WS, Guo XD, Qian Y, Zhang LJ (2013) Dissipative particle dynamics studies of doxorubicin-loaded micelles assembled from four-arm star triblock polymers 4AS-PCL-b-PDEAEMA-b-PPEGMA and their pH-release mechanism. J Phys Chem B 117(43):13688–13697. https://doi.org/10.1021/jp407529u

    Article  CAS  PubMed  Google Scholar 

  36. Wen XF, Lan JL, Cai ZQ, Pi PH, Xu SP, Zhang LJ, Qian Y, Wang SN (2014) Dissipative particle dynamics simulation on drug loading/release in polyester(-PEG) dendrimer. J Nanopart Res 16(5):2403. https://doi.org/10.1007/s11051-014-2403-5

    Article  CAS  Google Scholar 

  37. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435. https://doi.org/10.1063/1.474784

    Article  CAS  Google Scholar 

  38. Droghetti H, Pagonabarraga I, Carbone P, Asinari P, Marchisio D (2018) Dissipative particle dynamics simulations of tri-block co-polymer and water: phase diagram validation and microstructure identification. J Chem Phys 149(18):184903. https://doi.org/10.1063/1.5049641

    Article  CAS  PubMed  Google Scholar 

  39. Nicolaides D (2001) Mesoscale modelling. Mol Simul 26(1):51. https://doi.org/10.1080/08927020108024200

    Article  CAS  Google Scholar 

  40. Chen S, Guo C, Hu GH, Liu HZ, Liang XF, Wang J, Ma JH, Zheng L (2007) Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO-PPO-PEO block copolymer micelles. Colloid Polym Sci 285(14):1543–1552. https://doi.org/10.1007/s00396-007-1721-x

    Article  CAS  Google Scholar 

  41. Song XY, Zhao SL, Fang SW, Ma YZ, Duan M (2016) Mesoscopic simulations of adsorption and association of PEO-PPO-PEO triblock copolymers on a hydrophobic surface: from mushroom hemisphere to rectangle brush. Langmuir 32(44):11375–11385. https://doi.org/10.1021/acs.langmuir.6b02414

    Article  CAS  PubMed  Google Scholar 

  42. Kacar G, Peters EAJF, de With G (2013) A generalized method for parameterization of dissipative particle dynamics for variable bead volumes. Epl-Europhys Lett 102(4):40009. https://doi.org/10.1209/0295-5075/102/40009

    Article  CAS  Google Scholar 

  43. Kacar G, Peters EAJF, de With G (2013) Mesoscopic simulations for the molecular and network structure of a thermoset polymer. Soft Matter 9(24):5785–5793. https://doi.org/10.1039/C3sm50304f

    Article  CAS  Google Scholar 

  44. Kacar G, Peters EAJF, de With G (2013) Structure of a thermoset polymer near an alumina substrate as studied by dissipative particle dynamics. J Phys Chem C 117(37):19038–19047. https://doi.org/10.1021/jp406060t

    Article  CAS  Google Scholar 

  45. Kacar G, Peters EAJF, van der Ven LGJ, de With G (2015) Hierarchical multi-scale simulations of adhesion at polymer-metal interfaces: dry and wet conditions. Phys Chem Chem Phys 17(14):8935–8944. https://doi.org/10.1039/C5cp00343a

    Article  CAS  PubMed  Google Scholar 

  46. Foster B, Cosgrove T, Hammouda B (2009) Pluronic triblock copolymer systems and their interactions with ibuprofen. Langmuir 25(12):6760–6766. https://doi.org/10.1021/la900298m

    Article  CAS  PubMed  Google Scholar 

  47. Wei D, Ge LL, Guo R (2018) Effect of hydrophilically modified ibuprofen on thermoresponsive gelation of pluronic copolymer. Colloids Surf A 553:1–10. https://doi.org/10.1016/j.colsurfa.2018.05.012

    Article  CAS  Google Scholar 

  48. Basak R, Bandyopadhyay R (2013) Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29(13):4350–4356. https://doi.org/10.1021/la304836e

    Article  CAS  PubMed  Google Scholar 

  49. Lee CF, Tseng HW, Bahadur P, Chen LJ (2018) Synergistic effect of binary mixed-Pluronic systems on temperature dependent self-assembly process and drug solubility. Polymers-Basel 10(1):105. https://doi.org/10.3390/polym10010105

    Article  CAS  PubMed Central  Google Scholar 

  50. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, New York

    Google Scholar 

  51. Kacar G, de With G (2016) Hydrogen bonding in DPD: application to low molecular weight alcohol–water mixtures. Phys Chem Chem Phys 18:9554–9560

    Article  CAS  Google Scholar 

  52. Kacar G (2017) Dissipative particle dynamics parameterization and simulations to predict negative volume excess and structure of PEG and water mixtures. Chem Phys Lett 690:133–139

    Article  CAS  Google Scholar 

  53. Kacar G (2018) Characterizing the structure and properties of dry and wet polyethylene glycol using multi-scale simulationst. Phys Chem Chem Phys 20(17):12303–12311. https://doi.org/10.1039/c8cp01802b

    Article  CAS  PubMed  Google Scholar 

  54. Kacar G, Albers PTM, Esteves ACC, de With G (2018) Mesoscopic structure and swelling properties of crosslinked polyethylene glycol in water. J Coat Technol Res 15(4):691–701. https://doi.org/10.1007/s11998-018-0065-4

    Article  CAS  Google Scholar 

  55. Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736. https://doi.org/10.1016/S0006-3495(01)75737-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  57. Pasquino R, Droghetti H, Carbone P, Mirzaagha S, Grizzuti N, Marchisio D (2019) An experimental rheological phase diagram of a tri-block co-polymer in water validated against dissipative particle dynamics simulations. Soft Matter 15(6):1396–1404

    Article  CAS  Google Scholar 

  58. Alexandridis P, Zhou DL, Khan A (1996) Lyotropic liquid crystallinity in amphiphilic block copolymers: temperature effects on phase behavior and structure for poly(ethylene oxide)-b-poly (propylene oxide)-b-poly(ethylene oxide) copolymers of different composition. Langmuir 12(11):2690–2700. https://doi.org/10.1021/la951025s

    Article  CAS  Google Scholar 

  59. Zhou XM, Wu XB, Wang HG, Liu CS, Zhu ZG (2011) Phase diagram of the Pluronic L64-H2O micellar system from mechanical spectroscopy. Phys Rev E 83(4):041801. https://doi.org/10.1103/PhysRevE.83.041801

    Article  CAS  Google Scholar 

  60. Almeida H, Lobao P, Frigerio C, Fonseca J, Silva R, Lobo JMS, Amaral MH (2017) Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen. Pharm Dev Technol 22(3):336–349. https://doi.org/10.3109/10837450.2015.1125922

    Article  CAS  PubMed  Google Scholar 

  61. Kadam Y, Yerramilli U, Bahadur A, Bahadur P (2011) Micelles from PEO-PPO-PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Colloids Surf B 83(1):49–57. https://doi.org/10.1016/j.colsurfb.2010.10.041

    Article  CAS  Google Scholar 

  62. Wang JL, Wang R, Li LB (2009) Preparation and properties of hydroxycamptothecin-loaded nanoparticles made of amphiphilic copolymer and normal polymer. J Colloid Interface Sci 336(2):808–813. https://doi.org/10.1016/j.jcis.2009.04.080

    Article  CAS  PubMed  Google Scholar 

  63. Yang L, Alexandridis P, Steytler DC, Kositza MJ, Holzwarth JF (2000) Small-angle neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer pluronic L64 in aqueous solution. Langmuir 16(23):8555–8561. https://doi.org/10.1021/la000008m

    Article  CAS  Google Scholar 

  64. Thurn T, Couderc S, Sidhu J, Bloor DM, Penfold J, Holzwarth JF, Wyn-Jones E (2002) Study of mixed micelles and interaction parameters for ABA triblock copolymers of the type EOm-POn-EOm and ionic surfactants: equilibrium and structure. Langmuir 18(24):9267–9275. https://doi.org/10.1021/la020629a

    Article  CAS  Google Scholar 

  65. Wu GW, Chu B, Schneider DK (1995) Sans study of the micellar structure of Peo/Ppo/Peo aqueous-solution. J Phys Chem-Us 99(14):5094–5101. https://doi.org/10.1021/j100014a033

    Article  CAS  Google Scholar 

  66. Bao Y, Li SS, Liu L, Luan YX, Lin GM, Shao W (2012) Carmofur-loaded Pluronic P123 polymeric micelles: preparation and characterization. J Dispers Sci Technol 33(4):617–621. https://doi.org/10.1080/01932691.2011.574935

    Article  CAS  Google Scholar 

  67. Wei Z, Hao JG, Yuan S, Li YJ, Juan W, Sha XY, Fang XL (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376(1–2):176–185. https://doi.org/10.1016/j.ijpharm.2009.04.030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is thankful to Prof. Dr. Gijsbertus de With from Eindhoven University of Technology for the critical reading of the manuscript.

Funding

Part of the work is supported financially by TUBITAK 2232 Program (project no. 116C003) and Trakya University Research Fund (project no. TUBAP-2017/81).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Kacar.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kacar, G. Molecular understanding of interactions, structure, and drug encapsulation efficiency of Pluronic micelles from dissipative particle dynamics simulations. Colloid Polym Sci 297, 1037–1051 (2019). https://doi.org/10.1007/s00396-019-04535-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04535-0

Keywords

Navigation