Skip to main content
Log in

Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO–PPO–PEO block copolymer micelles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Dissipative particle dynamics (DPD) was used to simulate the formation and stabilization of gold nanoparticles in poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymer micelles. Primary gold clusters that were experimentally observed in the early stage of gold nanoparticle formation were modeled as gold bead in DPD simulation. It showed that gold beads were wrapped by the block copolymer and aggregated into spherical particles inside the micelles and forming stable Pluronic–gold colloids with two-layer structures. Increasing Pluronic concentration, molecular weight, and PPO block length led to the formation of more uniform and more stable gold nanoparticles. Density profiles of water beads suggested that the micelles, especially the hydrophobicity of the micellar cores, played an important role in stabilizing gold nanoparticles. Dynamic process indicated that the formation of gold nanoparticles was controlled by the competition between aggregation of primary gold clusters and the stabilization by micelles of block copolymers.. The DPD simulation results of gold–copolymer–water system agree well with previous experiments, while more structure information on microscopic level could be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757

    Article  CAS  Google Scholar 

  2. Sakai T, Alexandridis P (2004) Langmuir 20:8426

    Article  CAS  Google Scholar 

  3. Chen S, Guo C, Hu, GH, Wang J, Ma JH, Liang XF, Zheng L, Liu HZ (2006) Langmuir 22:9704

    Article  CAS  Google Scholar 

  4. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893

    Article  CAS  Google Scholar 

  5. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  6. Hoogerbrugge PJ, Koelman J (1992) Europhys Lett 19:155

    Article  Google Scholar 

  7. Groot RD, Warren PB (1997) J Chem Phys 107:4423

    Article  CAS  Google Scholar 

  8. Groot RD, Madden TJ (1998) J Chem Phys 108:8713

    Article  CAS  Google Scholar 

  9. Venturoli M, Smit B (1999) Phys Chem Comm 10:1

    Google Scholar 

  10. Groot RD, Rabone KL (2001) Biophys J 81:725

    Article  CAS  Google Scholar 

  11. Kranenburg M, Venturoli M, Smit B (2003) J Phys Chem B 107:11491

    Article  CAS  Google Scholar 

  12. Li DW, Liu XY, Feng YP (2004) J Phys Chem B 108:11206

    Article  CAS  Google Scholar 

  13. Allen MP (2006) J Phys Chem B 110:3823

    Article  CAS  Google Scholar 

  14. Laradji M, Kumar PBS (2004) Phys Rev Lett 93:198105

    Article  CAS  Google Scholar 

  15. Shillcock JC, Lipowsky R (2002) J Chem Phys 117:5048

    Article  CAS  Google Scholar 

  16. Shillcock JC, Lipowsky R (2005) Nat Mater 4:225

    Article  CAS  Google Scholar 

  17. Yamamoto S, Maruyama Y, Hyodo S (2002) J Chem Phys 116:5842

    Article  CAS  Google Scholar 

  18. Yamamoto S, Hyodo S (2003) J Chem Phys 118:7937

    Article  CAS  Google Scholar 

  19. Ortiz V, Nielsen SO, Discher DE, Klein ML, Lipowsky R, Shillcock J (2005) J Phys Chem B 109:17708

    Article  CAS  Google Scholar 

  20. Yang C, Chen X, Qiu H, Zhuang W, Chai Y, Hao J (2006) J Phys Chem B 110:21735

    Article  CAS  Google Scholar 

  21. Rekvig L, Hafskjold B, Smit B (2004) Langmuir 20:11583

    Article  CAS  Google Scholar 

  22. Qian HJ, Lu ZY, Chen LJ, Li ZS, Sun CC (2005) Macromolecules 38:1395

    Article  CAS  Google Scholar 

  23. Jury S, Bladon P, Cates M, Krishna S, Hagen M, Ruddock N, Warren P (1999) Phys Chem Chem Phys 1:2051

    Article  CAS  Google Scholar 

  24. Schulz SG, Kuhn H, Schmid G, Mund C, Venzmer J (2004) Colloid Polym Sci 283:284

    Article  CAS  Google Scholar 

  25. Yuan SL, Cai ZT, Xu GY, Jiang YS (2002) Chem Phys Lett 365:347

    Article  CAS  Google Scholar 

  26. Nakamura H (2004) Mol Simulat 30:941

    Article  CAS  Google Scholar 

  27. Gibson JB, Chen K, Chynoweth S (1998) J Colloid Interf Sci 206:464

    Article  CAS  Google Scholar 

  28. Malfreyt P, Tildesley DJ (2000) Langmuir 16:4732

    Article  CAS  Google Scholar 

  29. Clark AT, Lal M, Ruddock JN, Warren PB (2000) Langmuir 16:6342

    Article  CAS  Google Scholar 

  30. Kong B, Yang X (2006) Langmuir 22:2065

    Article  CAS  Google Scholar 

  31. Cao X, Xu G, Li Y, Zhang Z (2005) J Phys Chem A 109:10418

    Article  CAS  Google Scholar 

  32. Laradji M, Hore MJA (2004) J Chem Phys 121:10641

    Article  CAS  Google Scholar 

  33. Maiti A, Wescott J, Kung P (2005) Mol Simulat 31:143

    Article  CAS  Google Scholar 

  34. Juan SCC, Hua CY, Chen CL, Sun X, Xi H (2005) Mol Simulat 31:277

    Article  CAS  Google Scholar 

  35. van Vlimmeren BAC, Maurits NM, Zvelindovsky AV, Sevink GJA, Fraaije JGEM (1999) Macromolecules 32:646

    Article  Google Scholar 

  36. Guo SL, Hou TJ, Xu XJ (2002) J Phys Chem B 106:11397

    Article  CAS  Google Scholar 

  37. Maiti A, McGrother S (2004) J Chem Phys 120:1594

    Article  CAS  Google Scholar 

  38. Lam YM, Goldbeck-Wood G, Boothroyd C (2004) Mol Simulat 30:239

    Article  CAS  Google Scholar 

  39. Li YM, Xu GY, Luan YX, Yuan SL, Zhang ZQ (2005) Colloid Surf A 385:257

    Google Scholar 

  40. Yuan SL, Cai ZT, Xu GY, Jiang YS (2003) Colloid Polym Sci 281:1069

    Article  CAS  Google Scholar 

  41. Wu H, Xu J, He X, Zhao Y, Wen H (2006) Colloid Surf A 290:239

    Article  CAS  Google Scholar 

  42. Groot RD (2003) J Chem Phys 118:11265

    Article  CAS  Google Scholar 

  43. Guo C, Liu HZ, Chen JY (1999) Colloid Polym Sci 277:376

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No.20221603, No.20490200, and No. 20676137), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education, and the Chinese Academy of Sciences for international cooperation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Guo or Hui-Zhou Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Guo, C., Hu, GH. et al. Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO–PPO–PEO block copolymer micelles. Colloid Polym Sci 285, 1543–1552 (2007). https://doi.org/10.1007/s00396-007-1721-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1721-x

Keywords

Navigation