Skip to main content
Log in

The thermal conductivity of particulate composites by the use of a polyhedral model

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

A Correction to this article was published on 23 December 2017

This article has been updated

Abstract

In this paper, the authors introduce a body-centered polyhedral model capable of simulating the periodic structure of particulate composites, in order to estimate the thermal conductivity of a general class of this type of materials. This model takes into account the arrangement of internal and neighboring particles in the form of three distinct deterministic configurations, along with the concept of interphase on the thermal and mechanical properties of the composite, which is assumed to be macroscopically homogeneous and isotropic. Next, by means of this advanced multilayer model, an explicit analytical expression to evaluate the thermal conductivity of this type of composites is derived. The theoretical predictions were compared with the experimental results found in the literature, as well as with the theoretical values yielded by some reliable formulae derived from other workers, and a reasonable agreement was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 23 December 2017

    There is a small typo in the Appendix Section.

References

  1. Nielsen LE (1974) Mechanical properties of polymers and composites. Marcel Dekker Inc, New York

    Google Scholar 

  2. Takayanagi M, Harima H, Iwata Y (1963). J Soc Mat Sci Japan (ZAIRYO) 12:129

    Google Scholar 

  3. Takayanagi M, Uemura S, Minami S (1964). J Polym Sci Part C 5:113

    Article  Google Scholar 

  4. Spathis G, Kontou E, Theocaris P (1984). J Rheol 28:161

    Article  CAS  Google Scholar 

  5. Takano Y, Sakanishi A (1972). J Phys Soc Japan 32:582

    Article  Google Scholar 

  6. Lipatov Y (1977) Physical chemistry of filled polymers. Khimiya, Moscow

    Google Scholar 

  7. Sideridis E, Theocaris P, Papanicolaou G (1986). Rheol Acta 25:350

    Article  CAS  Google Scholar 

  8. Eshelby J (1957) Proceedings of the Royal Society of London. Series A, Math Phys Sci 241:376

    Article  Google Scholar 

  9. Chen H, Acrivos A (1978). Int J Solids and Struct 14:349

    Article  Google Scholar 

  10. Ju J, Chen T (1994). Acta Mech 103:123

    Article  Google Scholar 

  11. Nemat-Nasser S, Iwakuma T, Hejazi M (1982). Mech Mater 1:239

    Article  Google Scholar 

  12. Walker K, Jordan E, Freed A (1990) Equivalence of Green’s function and the Fourier series representation of composites with periodic microstructure. In: Weng GJ, Taya M, Ab CH (eds) Micromechanics and inhomogeneity, The Toshio Mum Anniversary Volume. Springer, New York, pp 535–558

    Chapter  Google Scholar 

  13. Nunan K, Keller J (1984). Mech Phys Solids 32:259

    Article  Google Scholar 

  14. Sangani A, Lu J (1987). J Mech Phys Solids 35:1

    Article  Google Scholar 

  15. Rodin G (1993). Int J Solids Struct 30:1849

    Article  Google Scholar 

  16. Cohen I, Bergman D (2003). Int J Solids Struct 51:1433

    Google Scholar 

  17. Balch D, Fitzgerald T, Michaud V, Mortensen A, Shen Y, Suresh S (1996). Metall Mater Trans A 27:3700

    Article  Google Scholar 

  18. Yin H, Sun L (2005). Philos Mag Lett 85:163

    Article  CAS  Google Scholar 

  19. Roudini G, Tavangar R, Weber L, Mortensen A (2010). Int J Mat Res 101:113

    Article  Google Scholar 

  20. Sideridis E, Venetis J (2014). Int Rev on Model Simul 7:671

    Google Scholar 

  21. Eucken A (1932) Forsch. Gebiete Ingenieurw B3 Forschungsheft 353:16

    Google Scholar 

  22. Bruggeman D (1936). Ann Phys 24:636

    Google Scholar 

  23. Lewis T, Nielsen L (1970). Jnl Apl Pol Sci 14:1449

    Article  CAS  Google Scholar 

  24. Lin F, Bhatia G, Ford J (1973). J Appl Polym Sci 49:1901

    Article  Google Scholar 

  25. Khan K, Muliana A (2010). Acta Mech 209:153

    Article  Google Scholar 

  26. Ordonez-Miranda J, Young R, Alvarado-Gil J (2012). J Appl Phys 111:044319

    Article  Google Scholar 

  27. Faroughi S, Huber C (2015). J Appl Phys 117:055104

    Article  Google Scholar 

  28. Kytopoulos V, Sideridis E (2016). JP J Heat and Mass Transfer 13:395

    Article  Google Scholar 

  29. Shen L, Li J (2003). Int J Solids Struct 40:1393

    Article  Google Scholar 

  30. Sideridis E (2016). Composite Interfaces 23:231

    Article  Google Scholar 

  31. Venetis J, Sideridis E (2016). Ind J Pure and Appl Phys 54:313

    Google Scholar 

  32. Garboczi E, Berryman J (2000). Conc Sci and Engin 2:88

    Google Scholar 

  33. Felske J (2004). Int J Heat Mass Trans 47:3453

    Article  Google Scholar 

  34. Karayacoubian, P., Yovanovich, M. and Culham, J. (2006) ‘Thermal resistance – based for bounds for the effective conductivity of composite thermal interface materials. In: 2006 IEEE/CPMT 22nd semiconductor thermal measurement & management symposium, (SEMI-THERM), US

  35. Pan M, Zhang C, Liu B, Mu J (2013). J Mat Sci Res 2:153

    CAS  Google Scholar 

  36. Theocaris P, (1987) In: Henrici-Olive G, Olive S (eds) The Mesophase concept in composites, polymers–properties and applications, vol 11. Springer-Verlag, Berlin, Germany

  37. Lipatov Y (1980) The Mesophase phenomena in polymers. Naukova Dumka, Kiev, USSR 

  38. Sideridis E, Papanicolaou G (1988). Rheological Acta 27:608

  39. Bigg D (1986). Polym Composites 7:125

  40. Cromwell P (1999) Polyhedra Cambridge University Press, Edinburg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sideridis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00396-017-4250-2.

Appendix

Appendix

Let us present some formulae for the thermal conductivity of particulate composites found in the literature.

The Maxwell–Eucken formula [21]

$$ {K}_c={K}_m\left(\frac{K_f+2{K}_m+2{U}_f\left({K}_f-{K}_m\right)}{K_f+2{K}_m+-\left({K}_f-{K}_m\right)}\right) $$
(41)

The Bruggeman formula [22]

$$ 1-{U}_f=\frac{K_f-{K}_c}{K_f-{K}_m}{\left(\frac{K_m}{K_c}\right)}^{1/3} $$
(42)

This implicit expression can be equivalently modified to a cubic equation by setting.

\( x=\sqrt[3]{K_c} \) with \( x\in {R}_{+}^{\ast } \).

Thus, it implies that

$$ \left(1-{U}_f\right)\frac{x}{\sqrt[3]{K_m}}=\frac{K_f-{x}^3}{K_f-{K}_m}\iff \frac{\left(1-{U}_f\right)\cdot \left({K}_f-{K}_m\right)}{\sqrt[3]{K_m}}x={K}_f-{x}^3\iff $$
$$ {x}^3+\frac{\left(1-{U}_f\right)\cdot \left({K}_f-{K}_m\right)}{\sqrt[3]{K_m}}x-{K}_f=0 $$

This cubic equation can be solved with respect to the auxiliary variable x using the well-known Cardano’s technique provided that the variable U f takes the distinct values 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.65.

Next, the corresponding values of Κ c can be easily calculated.

The Lewis–Nielsen formula [23]

$$ {K}_c={K}_m\frac{1+A\cdot B\cdot {U}_f}{1-B\cdot \psi \cdot {U}_f} $$
(43)

with

$$ B=\frac{K_f/{K}_m-1}{K_f/{K}_m+A};\psi =1+\frac{K_f/{K}_m-1}{K_f/{K}_m+A}{U}_f $$

Also, A is the shape coefficient for the filler particles which, for spherical ones, is equal to 1.5.

The Kytopoulos–Sideridis formula [28]

$$ \frac{1}{\kern0.24em {K}_c}=\frac{1}{K_m}+\frac{\left({K}_m-{K}_f\right){U}_f}{K_f{K}_m}\max \left\{{k}_1,{k}_2\right\} $$
(44)

where k 1 and k 2 are the dimensionless parameters somewhat analogous to the packing factor for periodic particulate composites defined by Theocaris in Ref. [36]. Evidently, these parameters lie between 0 and 1.

The Venetis–Sideridis formula [31]

$$ {K}_c=\frac{K_m{K}_f{\overline{K}}_i}{K_f{\overline{K}}_i\left(\frac{r_1^3}{r_5^3}+\frac{r_5^3-{r}_4^3}{r_5^3}\right)+{K}_m{\overline{K}}_i\left(\frac{r_3^3-{r}_2^3}{r_5^3}\right)+{K}_f{K}_m\left(\frac{r_2^3-{r}_1^3}{r_5^3}+\frac{r_4^3-{r}_3^3}{r_5^3}\right)} $$
(45)

where r 1 to r 5 denote the radii of a coaxial five-phase spherical model arising from the transformation of the non-body-centered cubic RVE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venetis, J., Sideridis, E. The thermal conductivity of particulate composites by the use of a polyhedral model. Colloid Polym Sci 296, 195–209 (2018). https://doi.org/10.1007/s00396-017-4227-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4227-1

Keywords

Navigation