Skip to main content
Log in

Effects of triphenyl phosphate on styrene suspension polymerization process and flame retardance properties of polystyrene/triphenyl phosphate nanocomposite

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Preparation of polystyrene nanocomposites containing flame retardants is difficult to achieve in one step by suspension polymerization. Styrene suspension polymerization was studied to determine the effects of the flame retardant on the polymerization process and properties of polystyrene beads. Triphenyl phosphate (TPP) was used in this work, which can dissolve completely in styrene monomers. The results showed that TPP were nanosized spherical particles, distributed homogenously and uniformly in a polystyrene (PS) matrix, and the formation mechanism of TPP nanoparticles was also investigated. In addition, the effects of TPP on the styrene polymerization process were investigated. With TPP amount increasing, the polymerization time increased significantly; molecular weight of PS nanocomposites also decreased and molecular weight distribution became wide; the particle size distribution (PSD) of the PS nanocomposites became wider than pure PS slightly as the particle size decreased. PS/TPP nanocomposites obtained good flame retardance because of nanodispersed TPP particles in its matrix. In a word, the suspension polymerization method provides a facile approach to prepare PS/TPP nanocomposites with better properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Levchik SV, Weil ED (2008) New developments in flame retardancy of styrene thermoplastics and foams. Polym Int 57:431–448

    Article  CAS  Google Scholar 

  2. Tai QL, Chen LJ, SongL NSB, Hu Y, Yuen RKK (2010) Preparation and thermal properties of a novelflame retardant copolymer. Polym Degrad Stab 95:830–836

    Article  CAS  Google Scholar 

  3. Utevski L, Scheinker M, Georlette P, Lach S (1997) Flame retardancy in UL-94 V-0 and in UL-94 5VA high impact polystyrene. J Fire Sci 15:375–389

    Article  CAS  Google Scholar 

  4. Chen L, Wang YZ (2010) A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Techno 21:1–26

    Google Scholar 

  5. Liu YY, Wang SJ, Xiao M, Meng YZ (2007) Halogen-free polymeric flame-retardants for common resins. Res J Chem Environ 11:84–103

    CAS  Google Scholar 

  6. Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283–2300

    Article  CAS  Google Scholar 

  7. Zhou KQ, Zhang QJ, Liu JJ, Wang B, Jiang SH, Shi YQ, Hu Y, Gui Z (2014) Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv 4:13205–13214

    Article  CAS  Google Scholar 

  8. Liu JC, Yu ZL, Chang HB, Zhang YB, Shi YZ, Luo J, Pan BL, Lu C (2014) Thermal degradation behavior and fire performance of halogen-free flame-retardant high impact polystyrene containing magnesium hydroxide and microencapsulated red phosphorus. Polym Degrad Stab 103:83–95

    Article  CAS  Google Scholar 

  9. Yan YW, Chen L, Jian RK, Kong S, Wang YZ (2012) Intumescence: an effect way to flame retardance and smoke suppression for polystyrene. Polym Degrad Stab 97:1423–1431

    Article  CAS  Google Scholar 

  10. Braun U, Schartel B (2004) Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromol Chem Phys 205:2185–2196

    Article  CAS  Google Scholar 

  11. Cze’ge’ny Z, Blazso´ M (2008) Effect of phosphorous flame retardants on the thermal decomposition of vinyl polymers and copolymers. J Anal Appl Pyrolysis 81: 218–224.

  12. Cui WG, Guo F, Chen JF (2007) Preparation and properties of flame retardant high impact polystyrene. Fire Safety J 42:232–239

    Article  CAS  Google Scholar 

  13. Yan YW, Huang JQ, Guan YH, Shang K, Jian RK, Wang YZ (2014) Flame retardance and thermal degradation mechanism of polystyrene modified with aluminum hypophosphite. Polym Degrad Stab 99:35–42

    Article  CAS  Google Scholar 

  14. Dowding PJ, Vincent B (2000) Suspension polymerisation to form polymer beads. Colloid Surface A 161:259–269

    Article  CAS  Google Scholar 

  15. Schellenberg J (2008) Effects of styrene oligomers and polymers on the suspension polymerization behavior and properties of expandable polystyrene. J Appl Polym Sci 110:453–458

    Article  CAS  Google Scholar 

  16. Park M (2006) Suspension polymerization with hydrophobic silica as a stabilizer II. Preparation of polystyrene composite particles containing carbon black. Polym-Korea 30:505–511

    CAS  Google Scholar 

  17. Bao YZ, Huang ZM, Weng ZX (2006) Preparation and characterization of poly(vinyl chloride)/layered double hydroxides nanocomposite via in situ suspension polymerization. J Appl Polym Sci 102:1471–1477

    Article  CAS  Google Scholar 

  18. Zheng ZH, Li WJ, Sun HM, Cheng AQ, Yan JT, Wang HW, Cui XJ (2013) Preparation and characterization of polystyrene/modified carbon black composite beads via in situ suspension polymerization. Polym Comppos 34:1110–1118

    Article  CAS  Google Scholar 

  19. Yan JT, Miao XJ, Zhang QY, Cui XJ, Li JF, Wang HY (2011) One-step preparation of black polystyrene particles via in situ suspension polymerization. Polym Eng Sci 51:294–301

    Article  CAS  Google Scholar 

  20. Hwu JM, Ko TH, Yang WT, Lin JC, Jiang GJ, Xie W, Pan WP (2004) Synthesis and properties of polystyrene–montmorillonite nanocomposites by suspension polymerization. J Appl Polym Sci 91:101–109

    Article  CAS  Google Scholar 

  21. Zhang CW, Li XM, Yang RJ (2015) Facile preparation and characterization of polystyrene/triphenyl phosphate nanocomposite via suspension polymerization. Chem Lett 44:1762–1764

    Article  CAS  Google Scholar 

  22. Gonccalves OH, Nogueira AL, Araujo PHH, Machado RAF (2011) Effects of operational parameters on particle size distributions in methyl methacrylate suspension polymerization. Ind Eng Chem Res 50:9116–9122

    Article  Google Scholar 

  23. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554

    Article  CAS  Google Scholar 

  24. Greenhalgh DJ, Williams AC, Timmins P, York P (1999) Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 88:1182–1190

    Article  CAS  Google Scholar 

  25. Gupta J, Nunes C, Vyas S, Jonnalagadda S (2011) Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B 115:2014–2023

    Article  CAS  Google Scholar 

  26. Brandrup J, Immergut EH, Grulke EA (2003) Polymer handbook(fourth edition). Wiley Interscience, New York

    Google Scholar 

  27. Lan YH, Li DH, Yang RJ, Liang WS, Zhou LX, Chen ZW (2013) Computer simulation study on the compatibility of cyclotriphosphazene containing aminopropylsilicone functional group in flame retarded polypropylene/ammonium polyphosphate composites. Compos Sci Technol 88:9–15

    Article  CAS  Google Scholar 

  28. Yang JQ, Zhang XL, Gao P, Gong XD, Wang GX (2014) Molecular dynamics and dissipative particle dynamics simulations of the miscibility and mechanical properties of GAP/DIANP blending systems. RSC Adv 4:41934–41941

    Article  CAS  Google Scholar 

  29. Ray SS, Okamoto K, Okamoto M (2003) Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367

    Article  CAS  Google Scholar 

  30. Brooks BW (2010) Suspension polymerization processes. Chem Eng Technol 33:1737–1744

    Article  CAS  Google Scholar 

  31. Gaan S, Sun G, Hutches K, Engelhard MH (2008) Effect of nitrogen additives on flame retardant action of tributyl phosphate: phosphoruse-nitrogen synergism. Polym Degrad Stab 93:99–108

    Article  CAS  Google Scholar 

  32. Oliveira MAM, Melo JPA, Nele M, Pinto JC (2012) In situ incorporation of doxorubicin in copolymer particles during suspension polymerization. Macromol Symp 319:23–33

    Article  CAS  Google Scholar 

  33. Alvarez J, Alvarez J, Hernández M (1994) A population balance approach for the description of particle size distribution in suspension polymerization reactors. Chem Eng Sci 49:99–113

    Article  CAS  Google Scholar 

  34. Jahanzad F, Sajjadi S, Brooks BW (2004) On the evolution of particle size average and size distribution in suspension polymerization processes. Macromol Symp 206:255–262

    Article  CAS  Google Scholar 

  35. Kaynak C, Sipahioglu BM (2013) Effects of nanoclays on the flammability of polystyrene with triphenyl phosphate-based flame retardants. J Fire Sci 31:339–355

    Article  Google Scholar 

  36. Pawlowski KH, Schartel B (2007) Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol bis(diphenyl phopshate) in polycarbonate_acrylonitrile-butadiene-styrene blends. Polym Int 56:1404–1414

    Article  CAS  Google Scholar 

  37. Schartel B (2010) Phosphorus-based flame retardancy mechanisms—old hat or starting point for future development? Materials 3:4710–4745

    Article  CAS  Google Scholar 

  38. Wang Y, Jow J, Su K, Zhang J (2012) Dripping behavior of burning polymers under UL94 vertical test conditions. J Fire Sci 30:477–501

    Article  Google Scholar 

  39. Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Safety J 18:255–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmei Li.

Ethics declarations

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

The molecular weight and monomer conversion of polystyrene composite at different polymerization time are shown in Table S1, the mesoscopic morphologies of styrene/PS/TPP at different polymerization time by DPD simulation are given in Fig. S1.

Fig. S1

(DOCX 3393 kb)

Table S1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, X., Yang, R. et al. Effects of triphenyl phosphate on styrene suspension polymerization process and flame retardance properties of polystyrene/triphenyl phosphate nanocomposite. Colloid Polym Sci 294, 1153–1163 (2016). https://doi.org/10.1007/s00396-016-3872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3872-0

Keywords

Navigation