Skip to main content
Log in

Fabrication and morphological evolution of inverse core/shell structural latex particles of poly(vinyl acetate)/polystyrene by maleic anhydride grafting

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In order to overcome the large differences in reactivity ratio and hydrophilicity between vinyl acetate (VAc) monomer and styrene (St) monomer and synthesize a stable poly(vinyl acetate)/polystyrene (PVAc/PS) inverse core/shell (ICS) structural emulsion, this paper presented a novel method to prepare PVAc/PS ICS structural latex particles. Maleic anhydride (MA) grafting, for the first time, was introduced to fabricate the ICS latex particles, where VAc monomer was used as the core monomer and St monomer as the shell monomer. By adjusting the core/shell (CS) ratio and MA content, the morphology of the particles could be controlled to have a regular evolution from strawberry-like to semi-wrapped and final ball-like. In addition, upon MA content exceeding 1 % (percentage of the total monomer), the secondary nucleation almost disappeared gradually. The resulting ICS particles had an average diameter approximately 330 nm and a controllable distribution. Further results of characterization such as phase separation structure, existence of thin transition layer, and special morphological feature of latex particle also demonstrated that this ICS structure had been fabricated successfully. The mechanism of formation was displayed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jia ZC, Wu H, Morbidelli M (2007) Thermal restructuring of fractal clusters: the case of a strawberry-like core-shell polymer colloid. Langmuir 23:5713–5721

    Article  CAS  Google Scholar 

  2. Liu YD, Fang FF, Choi HJ (2010) Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic Microparticles and their Electrorheology. Langmuir 26:12849–12854

    Article  CAS  Google Scholar 

  3. Wu H, Liao CY, Jiao QY, Wang Z, Cheng WZ, Wan Y (2012) Fabrication of core–shell microspheres using alginate and chitosan–polycaprolactone for controlled release of vascular endothelial growth factor. React Funct Polym 72:427–437

    Article  CAS  Google Scholar 

  4. Lin CL, Chiu WY, Lee CF (2005) Preparation of thermoresponsive core–shell copolymer latex with potential use in drug targeting. J Colloid Interface Sci 290:397–405

    Article  CAS  Google Scholar 

  5. Lin CL, Chiu WY, Lee CF (2005) Thermal/pH-sensitive core-shell copolymer latex and its potential for targeting drug carrier application. Polym 46:10092–10101

    Article  CAS  Google Scholar 

  6. Wang H, Rempel GL (2013) pH-responsive polymer core-shell nanospheres for drug delivery. J Polym Sci Part A: Polym Chem 51:4440–4450

    Article  CAS  Google Scholar 

  7. Ye WJ, Leung MF, Xin J, Kwong TL, Lee DKL, Li P (2005) Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polym 46:10538–10543

    Article  CAS  Google Scholar 

  8. Zhang SF, Wang RM, He YF, Song PF, Wu ZM (2013) Waterborne polyurethane-acrylic copolymers crosslinked core-shell nanoparticles for humidity-sensitive coatings. Prog Org Coat 76:729–735

    Article  CAS  Google Scholar 

  9. Ha JW, Park IJ, Lee SB, Kim DK (2002) Preparation and characterization of core-shell particles containing perfluoroalkyl acrylate in the shell. Macromolecules 35:6811–6818

    Article  CAS  Google Scholar 

  10. Sherman RL, Ford Jr WT (2005) Small core/thick shell polystyrene/poly(methyl methacrylate) latexes. Ind Eng Chem Res 44:8538–8541

  11. Wang XY, Liu WJ, Wang XB, Zhang ZC, Liu HR (2007) Preparation of poly (methacrylic acid)/polystyrene composite particles and morphology control. Mater Lett 61:4478–4481

    Article  CAS  Google Scholar 

  12. Mu YC, Qiu T, Li XY (2009) Monodisperse and multilayer core–shell latex via surface cross-linking emulsion polymerization. Mater Lett 63:1614–1617

    Article  CAS  Google Scholar 

  13. Park JG, Forster JD, Dufresne ER (2010) High-yield synthesis of monodisperse dumbbell-shaped polymer nanoparticles. J Am Chem Soc 132:5960–5961

    Article  CAS  Google Scholar 

  14. Wang ML, Ma ZJ, Zhu D, Zhang DY, Yin W (2013) Core-shell latex synthesized by emulsion polymerization using an alkali-soluble resin as sole surfactant. J Appl Polym Sci 128:4224–4230

    Article  CAS  Google Scholar 

  15. Chicoma DL, Carranza V, Giudici R (2013) Synthesis of core-shell particles of polystyrene and poly(methyl methacrylate) using emulsion photopolymerization. Macromol Symp 324:124–133

    Article  CAS  Google Scholar 

  16. Soltan-Dehghan M, Sharifi-Sanjani N, Naderi N (2006) Preparation of polystyrene/poly(vinyl acetate) nanocomposites with a core–shell structure via emulsifier-free emulsion polymerization. J Appl Polym Sci 100:2409–2414

    Article  CAS  Google Scholar 

  17. Lu J, Easteal AJ, Edmond N (2012) Synthesis of crosslinkable latices with poly(vinyl acetate-co-VeoVa10) cores and poly(glycidyl methacrylate) shells and online-FTIR analysis of the amine induced curing process. J Appl Polym Sci 126:E172–E181

    Article  CAS  Google Scholar 

  18. Min TI, Klein A, El-Aasser MS, Vanderhoff JW (1983) Morphology and grafting in polybutylacrylate-polystyrene core-shell emulsion polymerization. Polym Chem 21:2845–2861

    Article  CAS  Google Scholar 

  19. Ding XF, Zhao JZ, Liu YH, Zhang HB, Wang ZC (2004) Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization. Mater Lett 58:3126–3130

    Article  CAS  Google Scholar 

  20. Kim II H, Shin JS, Cheong IW, Kim JI, Kim JH (2002) Seeded emulsion polymerization of methyl methacrylate using aqueous polyurethane dispersion: effect of hard segment on grafting efficiency. Colloid Surf A-Physicochem Eng Asp 207:169–176

    Article  CAS  Google Scholar 

  21. Cui XJ, Zhong SL, Gao Y, Wang HY (2008) Preparation and characterization of emulsifier-free core–shell interpenetrating polymer network-fluorinated polyacrylate latex particles. Colloid Surf A-Physicochem Eng Asp 324:14–21

    Article  CAS  Google Scholar 

  22. Chai SL, Jin MM, Tan HM (2008) Comparative study between core–shell and interpenetrating network structure polyurethane/polyacrylate composite emulsions. Eur Polym J 44:3306–3313

    Article  CAS  Google Scholar 

  23. Okubo M, Yamaguchi S, Matsumoto T (1986) Morphology of composite polymer emulsion particles consisting of two kinds of polymers between which ionic bonding intermolecular interaction operates. J Appl Polym Sci 31:1075–1082

    Article  CAS  Google Scholar 

  24. Saito R, Ni XY, Ichimura A, Ishizu K (1998) Synthesis of core–shell type microsphere with reactive seed microspheres. J Appl Polym Sci 69:211–216

    Article  CAS  Google Scholar 

  25. Xia RK, He WD, Pan CY (2002) Amphiphilic particles prepared by grafting acrylamide onto the surface of styrene-rich copolymer/2-hydroxyethyl acrylate rich copolymer particles. Colloid Polym Sci 280:865–872

    Article  CAS  Google Scholar 

  26. Ballauff M (2003) Nanoscopic polymer particles with a well-defined surface: synthesis, characterization, and properties. Chem Phys 204:220–234

    CAS  Google Scholar 

  27. Tsuji S, Kawaguchi H (2004) Temperature-sensitive hairy particles prepared by living radical graft polymerization. Langmuir 20:2449–2455

    Article  CAS  Google Scholar 

  28. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polym 48:1815–1823

    Article  CAS  Google Scholar 

  29. Long B, Gu JY, Huan SQ, Li ZG (2014) Aqueous poly(vinyl acetate)-based core/shell emulsion: synthesis, morphology, properties and application. RSC Adv. doi:10.1039/c4ra03695f

    Google Scholar 

  30. Price CC (1948) Some relative monomer reactivity factors. J Appl Polym Sci 3:772–775

    Article  CAS  Google Scholar 

  31. Ferguson CJ, Russell GT, Gilbert RG (2002) Synthesis of latices with polystyrene cores and poly(vinyl acetate) shells. 1. Use of polystyrene seeds. Polym 43:6371–6382

    Article  CAS  Google Scholar 

  32. Ferguson CJ, Russell GT, Gilbert RG (2003) Synthesis of latices with hydrophobic cores and poly(vinyl acetate) shells. 2. Use of poly(vinyl acetate) seeds. Polym 44:2607–2619

    Article  CAS  Google Scholar 

  33. Ferguson CJ, Russell GT, Gilbert RG (2002) Modelling secondary particle formation in emulsion polymerisation: application to making core–shell morphologies. Polym 43:4557–4570

    Article  CAS  Google Scholar 

  34. Musyanovych A, Dausend J, Dass M (2011) Criteria impacting the cellular uptake of nanoparticles: a study emphasizing polymer type and surfactant effects. Acta Biomater 7:4160–4168

    Article  CAS  Google Scholar 

  35. Nemtoi G, Beldie C, Tircolea C, Popa I, Cretescu I, Humelnicu I, Humelnicu D (2001) Behaviour of the poly(maleic anhydride-co- vinyl acetate) copolymer in aqueous solutions. Eur Polym J 37:729–735

    Article  CAS  Google Scholar 

  36. Stubbs JM, Sundberg DC (2005) Measuring the extent of phase separation during polymerization of composite latex particles using modulated temperature DSC. J Polym Sci Part B: Polym Phys 43:2790–2806

    Article  CAS  Google Scholar 

  37. Wilea KB, Bhabu VA, Pasquale AJ, Long TE, Mcgrath JE (2004) Monomer reactivity ratios for acrylonitrile–methyl acrylate free-radical copolymerization. J Polym Sci Part A: Polym Chem 42:2994–3001

    Article  Google Scholar 

  38. Fernández-García M, Torrado MF, Martínez G, Sánchez-Chaves M, Madruga EL (2000) Free radical copolymerization of 2-hydroxyethyl methacrylate with butyl methacrylate: determination of monomer reactivity ratios and glass transition temperatures. Polym 41:8001–8008

    Article  Google Scholar 

  39. Ydens I, Degée P, Haddleton MD, Dubois P (2005) Reactivity ratios in conventional and nickel-mediated radical copolymerization of methyl methacrylate and functionalized methacrylate monomers. Eur Polym J 41:2255–2263

    Article  CAS  Google Scholar 

  40. ÒLeary K, Paul DR (2004) Copolymers of poly(n-alkyl acrylates): synthesis, characterization, and monomer reactivity ratios. Polym 45:6575–6585

    Article  Google Scholar 

  41. Erbil C, Özdemir S, Uyanık N (2000) Determination of the monomer reactivity ratios for copolymerization of itaconic acid and acrylamide by conductometric titration method. Polym 41:1391–1394

    Article  CAS  Google Scholar 

  42. İmren D (2010) Compatibilization of immiscible poly(vinyl chloride) (PVC)/polystyrene (PS) blends with maleic anhydride–styrene–vinyl acetate terpolymer (MAStVA). J Mol Struct 963:245–249

    Article  Google Scholar 

  43. Tao M, Hu ZQ, Zhang ZC (2008) Morphology of the poly(styrene-alt-maleic anhydride) micelles obtained by radiation-induced emulsion polymerization using anionic/nonionic mixed surfactants templates. Mater Lett 62:597–599

    Article  CAS  Google Scholar 

  44. Štaudner E, Kyselá G, Kruppová T, Turayová Z (1997) Study of the stability of maleic anhydride-vinyl acetate copolymers. Eur Polym J 33:463–465

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was given by the National Natural Science Foundation of China (31270609, 31570557), the Foundation of Doctoral program (373-20130062110002), the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (LBH-Q14004), the Natural Science Foundation of Heilongjiang Province (E201230), and the Fundamental Research Funds for the Central Universities (2572015AB01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Bai, L., Lou, C. et al. Fabrication and morphological evolution of inverse core/shell structural latex particles of poly(vinyl acetate)/polystyrene by maleic anhydride grafting. Colloid Polym Sci 294, 1117–1128 (2016). https://doi.org/10.1007/s00396-016-3870-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3870-2

Keywords

Navigation