Skip to main content
Log in

Tunable double-stranded inclusion complexes of γ-cyclodextrin threaded onto non-modified poly(ethylene glycol)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The formation of double-stranded inclusion complexes (ICs) between γ-cyclodextrin (γ-CD) and non-modified poly(ethylene glycol) (PEG) was reported to be of trace yield, while in the present work, tunable inclusion complexes between γ-CD and non-modified PEG were successfully prepared by choosing suitable γ-CD concentrations and PEG molecular weights. The obtained γ-CD/PEG ICs showed double-stranded structure whose yield, appearance, and forming rate were significantly affected by PEG molecular weight and temperature as revealed by means of optical microscopy, XRD, DSC, 1H NMR, and ITC. This improved understanding on how to control the formation of double-stranded inclusion complexes should be very helpful for preparation of more sophisticated molecular machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li L, Guo X, Fu L, Robert K, Stephen F (2008) Langmuir 24:8290

    Article  CAS  Google Scholar 

  2. Sanchez FS, Bouchemal K, Lebas G, Vauthier C, Santos-Magalhaes NS, Ponchel G (2009) J Mol Recognit 22:232

    Article  Google Scholar 

  3. Castronuovo G, Elia V, Viscardi FVAG (1997) Thermochim Acta 292:31

    Article  CAS  Google Scholar 

  4. Harada A, Kamachi M (1990) Macromolecules 23:2821–2823

    Article  CAS  Google Scholar 

  5. Hernández R, Rusa M, Rusa CC, López D, Mijangos C, Tonelli A (2004) Macromolecules 37:9620

    Article  Google Scholar 

  6. Ceccato M, Lo Nostro P, Baglioni P (1997) Langmuir 13:2436

    Article  CAS  Google Scholar 

  7. Xue J, Jia Z, Jiang X, Wang Y, Chen L, Zhou L, He P, Zhu X, Yan D (2006) Macromolecules 39:8905

    Article  CAS  Google Scholar 

  8. Yang L, Yang B, Chen W, Huang R, Yan S, Lin J (2010) J Agric Food Chem 58:8545

    Article  CAS  Google Scholar 

  9. Harada A, Kamachi M (1990) J. Chem. Soc. Chem. Commun, 1322

  10. Harada A, Nishiyama T, Kawaguchi Y, Okada M, Kamachi M (1997) Macromolecules 30:7115

    Article  CAS  Google Scholar 

  11. Lu J, Mirau PA, Tonelli AE (2001) Macromolecules 34:3276

    Article  CAS  Google Scholar 

  12. Uekama K, Hirayama F, Irie T (1998) Chem Rev 98:2045

    Article  CAS  Google Scholar 

  13. Collaboration A, Barate R, Buskulic D, Decamp D, Ghez P, Goy C (1998) Phys Lett B 429:169

    Article  Google Scholar 

  14. Forrest ML, Gabrielson N, Pack DW (2005) Biotechnol Bioeng 89:416

    Article  CAS  Google Scholar 

  15. Harada A (1994) Nature 370:126

    Article  CAS  Google Scholar 

  16. Inoue Y, Miyauchi M, Nakajima H, Takashima Y, Yamaguchi H, Harada A (2007) Macromolecules 40:3256

    Article  CAS  Google Scholar 

  17. Zhang Q, Tu Y, Tian H, Zhao Y, Stoddart J, Ågren H (2010) J Phys Chem B 114:6561

    Article  CAS  Google Scholar 

  18. Qu D, Wang Q, Ren J, Tian H (2004) Org Lett 6:2085

    Article  CAS  Google Scholar 

  19. Liao X, Chen G, Liu X, Chen W, Chen F, Jiang M (2010) Angew Chem Int Ed 49:4409

    Article  CAS  Google Scholar 

  20. Rusa CC, Tonelli AE (2000) Macromolecules 33:1813

    Article  CAS  Google Scholar 

  21. Li J, Harada A, Kamachi M (1994) Polym J 26:1019

    Article  CAS  Google Scholar 

  22. Fan MM, Yu Z, Luo H, Sheng Z, Li B (2009) Macromol Rapid Comm 30:897

    Article  CAS  Google Scholar 

  23. Xue J, Chen L, Zhou L, Jia Z, Wang Y, Zhu X, Yan D (2006) Polym Sci B Polym Phys 44:2050

    Article  CAS  Google Scholar 

  24. Xue J, Zhou L, He P, Yan D, Jiang X (2008) J Incl Phenom Macrocycl Chem 61:83

    Article  CAS  Google Scholar 

  25. Bouchemal K, Mazzaferro S (2012) Drug Discov Today 17:623

    Article  CAS  Google Scholar 

  26. Duff MR, Grubbs J, Howell EE (2011) JoVE 55:1

    Google Scholar 

  27. Francesco T, Marco Z, Giovanni C (2000) Degrad Stab 69:373

    Article  Google Scholar 

  28. Kayachi F, Uyar T (2011) J Agric Food Chem 59:11772

    Article  Google Scholar 

  29. Topchieva IN, Tonelli AE, Panova IG, Kalashnikov FA, Gerasimov VI, Rusa CC, Rusa M, Hunt MA (2004) Langmuir 20:9036

    Article  CAS  Google Scholar 

  30. Uyar T, Hunt MA, Gracz HS, Tonelli AE (2006) Cryst Growth Des 6:1113

    Article  CAS  Google Scholar 

  31. Rusa CC, Rusa M, Gomez M, Shin D, Fox DF, Tonelli AE (2004) Macromolecules 37:7992

    Article  CAS  Google Scholar 

  32. Szejtli J (1998) Chem Rev 98:1743

    Article  CAS  Google Scholar 

  33. Okumura Y, Ito K, Hayakawa R (1998) Phys Rev Lett 80:5003

    Article  CAS  Google Scholar 

  34. Harada A, Li J, Suzuki S, Kamachi M (1993) Macromolecules 26:5267

    Article  CAS  Google Scholar 

  35. Fleury G, Brochon C, Schlatter G, Bonnet G, Lappb A, Hadziioannou G (2005) Soft Matter 1:378

    Article  CAS  Google Scholar 

  36. Udachin KA, Wilson LD, Ripmeester JA (2000) J Am Chem Soc 122:12375

    Article  CAS  Google Scholar 

  37. De Lisi RO, Lazzara GI, Milioto ST (2011) Phys Chem Chem Phys 13:12571

    Article  Google Scholar 

  38. Balabai N, Linton B, Napper A, Priyadarshy S, Sukharevsky AP, Waldeck DH (1998) J Phys Chem B 102:9617

    Article  CAS  Google Scholar 

  39. Ooya T, Utsunomiya H, Eguchi M, Yui N (2005) Bioconjug Chem 16:62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support by the NSFC Grants (51273063 and 21476143), the Fundamental Research Funds for the Central Universities, the high school specialized research fund for the doctoral program (20110074110003), and 111 Project Grant (B08021) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Li, L., Wang, J. et al. Tunable double-stranded inclusion complexes of γ-cyclodextrin threaded onto non-modified poly(ethylene glycol). Colloid Polym Sci 294, 311–319 (2016). https://doi.org/10.1007/s00396-015-3788-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3788-0

Keywords

Navigation