Skip to main content
Log in

Supramolecular end-group separation of linear polymers with different terminals through host–guest interaction

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

By increasing the hydrophobicity of end group, the complexation rate between α-cyclodextrin (α-CD) and poly(ethylene glycol) (PEG) derivative speeds up greatly. Based on such a huge difference of complexation kinetics, the PEG derivative with palmityloxy terminal (PEG-C16) can be successfully separated from a carboxylic acid end-functionalized analogue (PEG-COOH) by once supramolecular purification. Adding α-CD into the aqueous solution of PEG-C16/PEG-COOH mixture, PEG-C16 is encapsulated into α-CD cavity to form the crystalline inclusion complex in a very short time, while almost all of PEG-COOH molecules are still reserved in the aqueous solution. After dichloromethane extraction, the pure PEG-C16 is obtained. Moreover, the host CD can be recycled. Thus, it is an efficient green way to separate and purify the linear polymers with different terminal functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mengerinka, Y., Petersa, R., van der Wala, S.J., Claessensb, H.A., Cramersb, C.A.: Endgroup-based separation and quantitation of polyamide-6,6 by means of critical chromatography. J. Chromatogr. A 949, 337–349 (2002)

    Article  Google Scholar 

  2. Jiang, X.-L., Lima, V., Schoenmakers, P.J.: Robust isocratic liquid chromatographic separation of functional poly(methyl methacrylate). J. Chromatogr. A 1018, 19–27 (2003)

    Article  CAS  Google Scholar 

  3. Jiang, X.-L., Schoenmakers, P.J., van Dongen, J.L.J., Lou, X.W., Lima, V., Brokken-Zijp, J.: Mass spectrometric characterization of functional poly(methyl methacrylate) in combination with critical liquid chromatography. Anal. Chem. 75, 5517–5524 (2003)

    Article  CAS  Google Scholar 

  4. Jiang, X.-L., Schoenmakersa, P.J., Lou, X.W., Lima, V., van Dongenc, J.L.J., Brokken-Zijp, J.: Separation and characterization of functional poly(n-butyl acrylate) by critical liquid chromatography. J. Chromatogr. A 1055, 123–133 (2004)

    Article  CAS  Google Scholar 

  5. Pasch H., Trathnigg B.: HPLC of Polymers. Springer-Verlag, Berlin (1998)

    Google Scholar 

  6. Park, S., Park, I., Chang, T., Ryu, C.Y.: Interaction-controlled HPLC for block copolymer analysis and separation. J. Am. Chem. Soc. 126, 8906–8907 (2004)

    Article  CAS  Google Scholar 

  7. Chang, T.: Recent advances in liquid chromatography analysis of synthetic polymers. Adv. Polym. Sci. 163, 1–60 (2003)

    CAS  Google Scholar 

  8. Jiang, X.-L.: Separation and characterization of functional polymers. PhD thesis, University of Amsterdam (2004)

  9. Ray, S.K., Sawant, S.B., Joshi, J.B., Pangarkar, V.G.: Development of new synthetic membranes for separation of benzene-cyclohexane mixtures by pervaporation: a solubility parameter approach. Ind. Eng. Chem. Res. 36, 5265–5276 (1997)

    Article  CAS  Google Scholar 

  10. Bakos, D., Bleha, T., Ozima, A., Berek, D.: Contribution of adsorption and partition to the separation mechanism in gel chromatography on inorganic carriers. J. Appl. Polym. Sci. 23, 2233–2244 (1979)

    Article  CAS  Google Scholar 

  11. Wu, R., Zou, H., Ye, M., Lei, Z., Ni, J.: Capillary electrochromatography for separation of peptides driven with electrophoretic mobility on monolithic column. Anal. Chem. 73, 4918–4923 (2001)

    Article  CAS  Google Scholar 

  12. Gorbunov, A., Trathnigg, B.: Theory of liquid chromatography of mono- and difunctional macromolecules I. studies in the critical interaction mode. J. Chromatogr. A 955, 9–17 (2002)

    Article  CAS  Google Scholar 

  13. Philipsen, H.J.A.: Determination of chemical composition distributions in synthetic polymers. J. Chromatogr. A 1037, 329–350 (2004)

    Article  CAS  Google Scholar 

  14. Barth, H.G., Boyes, B.E., Jackson, C.: Size exclusion chromatography and related separation techniques. Anal. Chem. 70, 251R–278R (1998)

    Article  CAS  Google Scholar 

  15. Berek, D.: Coupled liquid chromatographic techniques for the separation of complex polymers. Prog. Polym. Sci. 25, 873–908 (2000)

    Article  CAS  Google Scholar 

  16. Entelis, S.G., Evreinov, V.V., Gorshkov, A.V.: Functionality and molecular weight distribution of telechelic polymers. Adv. Polym. Sci. 76, 129–175 (1986)

    Google Scholar 

  17. Xue, J., Jia, Z.F., Jiang, X.-L., Wang, Y.P., Chen, L., Zhou, L., He, P., Zhu, X.Y., Yan, D.Y.: Kinetic separation of polymers with different terminals through inclusion complexation with cyclodextrin. Macromolecules 39, 8905–8907 (2006)

    Article  CAS  Google Scholar 

  18. Harada, A., Li, J., Suzuki, S., Kamachi, M.: Complex formation between polyisobutylene and cyclodextrins: inversion of chain-length selectivity between β-cyclodextrin and γ-cyclodextrin. Macromolecules 26, 5267–5268 (1993)

    Article  CAS  Google Scholar 

  19. Rusa, C.C., Tonelli, A.E.: Separation of polymers by molecular weight through inclusion compound formation with urea and α-cyclodextrin hosts. Macromolecules 33, 1813–1818 (2000)

    Article  CAS  Google Scholar 

  20. Okumura, H., Okada, M., Kawaguchi, Y., Harada, A.: Complex formation between poly(dimethylsiloxane) and cyclodextrins: new pseudo-polyrotaxanes containing inorganic polymers. Macromolecules 33, 4297–4298 (2000)

    Article  CAS  Google Scholar 

  21. Harada, A., Li, J., Kamachi, M.: The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992)

    Article  CAS  Google Scholar 

  22. Harada, A., Li, J., Kamachi, M.: Preparation and properties of inclusion complexes of polyethylene glycol with α-cyclodextrin. Macromolecules 26, 5698–5703 (1993)

    Article  CAS  Google Scholar 

  23. Ceccato, M., Lo Nostro, P., Baglioni, P.: α-Cyclodextrin/polyethylene glycol polyrotaxane: a study of the threading process. Langmuir 13, 2436–2439 (1997)

    Article  CAS  Google Scholar 

  24. Singla, S., Zhao, T., Beckham, H.W.: Purification of cyclic polymers prepared from linear precursors by inclusion complexation of linear byproducts with cyclodextrins. Macromolecules 36, 6945–6948 (2003)

    Article  CAS  Google Scholar 

  25. Harada, A., Kamachi, M.: Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules 23, 2821–2823 (1990)

    Article  CAS  Google Scholar 

  26. Rusa, C.C., Luca, C., Tonelli, A.E.: Polymer-cyclodextrin inclusion compounds: toward new aspects of their inclusion mechanism. Macromolecules 34, 1318–1322 (2001)

    Article  CAS  Google Scholar 

  27. Li, J., Ni, X., Zhou, Z., Leong, K.: Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and α-cyclodextrin. J. Am. Chem. Soc. 125, 1788–1795 (2003)

    Article  CAS  Google Scholar 

  28. Chen, L., Zhu, X.Y., Yan, D.Y., Chen, Y., Chen, Q., Yao, Y.F.: Controlling polymer architecture through host-guest interactions. Angew. Chem. Int. Ed. 45, 87–90 (2006)

    Article  Google Scholar 

  29. Wenz, G., Han, B.-H., Müller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)

    Article  CAS  Google Scholar 

  30. Allcock, H.R., Sunderland, N.J.: Separation of polymers and small molecules by crystalline host systems. Macromolecules 34, 3069–3076 (2001)

    Article  CAS  Google Scholar 

  31. Fang, Y.P., Zhu, X.Y., Yan, D.Y., Lu, Q.H., Zhu, P.F.: Investigations on poly(ethylene oxide)-p-bromotoluene intercalate by in situ heating Fourier transform IR spectroscopy. Colloid Polym. Sci. 280, 59–64 (2002)

    Article  CAS  Google Scholar 

  32. Takahashi, Y., Tadokoro, H.: Structural studies of polyethers, (–(CH2)m–O–)n. X. crystal structure of poly(ethylene oxide). Macromolecules 6, 672–675 (1973)

    Article  CAS  Google Scholar 

  33. Tadokoro, H., Chatani, Y., Yoshihara, T., Tahara, S.: Structural studies on polyethers, [–(CH2)m–O–]n. II. molecular structure of poly(ethylene oxide). Makromol. Chem. 73, 109–127 (1964)

    Article  CAS  Google Scholar 

  34. Ritter, H., Tabatabai, M.: Cyclodextrin in polymer synthesis: a green way to polymers. Prog. Polym. Sci. 27, 1713–1720 (2002)

    Article  CAS  Google Scholar 

  35. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  36. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  37. Li, Y.G., Shi, P.J., Pan, C.Y.: Synthesis, characterization, and thermal behavior of H-shaped copolymers prepared by atom transfer radical polymerization. Macromolecule 37, 5190–5195 (2004)

    Article  CAS  Google Scholar 

  38. Xue, J., Chen, L., Zhou, L., Jia, Z.F., Wang, Y.P., Zhu, X.Y., Yan, D.Y.: Effect of end groups on complexation kinetics between cyclodextrins and guest polymers. J. Polym. Sci., Part B: Polym. Phys. 44, 2050–2057 (2006)

    Article  CAS  Google Scholar 

  39. Ooya, T., Ito, A., Yui, N.: Preparation of α-cyclodextrin-terminated poly-rotaxane consisting of β-cyclodextrins and pluronic as a building block of a biodegradable network. Macromol. Biosci. 5, 379–383 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (20574044, 20744002 and 50633010). This work was also partially sponsored by NCET, Shanghai Rising-Star Program (06QA14029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, J., Zhou, L., He, P. et al. Supramolecular end-group separation of linear polymers with different terminals through host–guest interaction. J Incl Phenom Macrocycl Chem 61, 83–88 (2008). https://doi.org/10.1007/s10847-007-9397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9397-x

Keywords

Navigation