Skip to main content
Log in

Thermo-sensitive colloidal crystals composed of monodisperse colloidal silica- and poly(N-isopropyl acrylamide) gel spheres

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Thermo-sensitive colloidal crystals were prepared simply and conveniently by mixing of colloidal silica spheres with a series of thermo-sensitive gel spheres, poly (N-isopropyl acrylamide) (pNIPAm, 225~1500 nm in hydrodynamic diameter, 0.5~5 mol% in degree of cross-linking and at 20~45 °C) in the deionized aqueous suspension. The thermo-reversible change in the lattice spacing of colloidal crystals of monodispersed silica spheres (CS83, 103 nm in diameter) depends on the size of the admixed pNIPAm. For gel spheres with similar or less than that of the silica spheres, the lattice spacing decreased with rising temperature. On the other hand, the spacing increased with temperature for the mixtures with pNIPAm spheres of larger than the size of the silica spheres. A mechanism, which is able to explain properly the several experiments including the present work, is proposed, i.e., balancing between the weak adsorption and segregation effects of silica with gel spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JTG (1970) The preparation of monodisperse latexes with well characterized surfaces. In: Goldfinger G (ed) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New York, pp. 15–44

    Google Scholar 

  2. Hiltner PA, Papir YS, Krieger IM (1971) Diffraction of light by nonaqueous ordered suspensions. J Phys Chem 75:1881–1886

    Article  CAS  Google Scholar 

  3. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) Direct observation of ordered latex suspension by metallurgical microscope. J Colloid Interface Sci 44:330–338

    Article  CAS  Google Scholar 

  4. Williams R, Crandall RS, Wojtowicz PJ (1976) Melting of crystalline suspensions of polystyrene spheres. Phys Rev Lett 37:348–351

    Article  Google Scholar 

  5. Mitaku S, Ohtsuki T, Enari K, Kishimoto A, Okano K (1978) Studies of ordered monodisperse polystyrene latexes. 1. Shear ultrasonic measurements. Jpn J Appl Phys 17:305–313

    Article  CAS  Google Scholar 

  6. Lindsay HM, Chaikin PM (1982) Elastic properties of colloidal crystals and glasses. J Chem Phys 76:3774–3781

    Article  CAS  Google Scholar 

  7. Pieranski P (1983) Colloidal crystals. Contemp Phys 24:25–73

    Article  CAS  Google Scholar 

  8. Ottewill RH (1985) Dispersed systems-recent developments. Ber Bunsenges Phys Chem 89:517–525

    Article  CAS  Google Scholar 

  9. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Nucleation and growth of colloidal crystals. Phys Rev Lett 57:1733–1736

    Article  CAS  Google Scholar 

  10. Pusey PN, van Megen W (1986) Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342

    Article  CAS  Google Scholar 

  11. Okubo T (1988) Extraordinary behavior in the structural properties of colloidal macrions in deionized suspension and the importance of the debye-screening length. Acc Chem Res 21:281–286

    Article  CAS  Google Scholar 

  12. Sood AK (1991) Structural ordering in colloidal suspensions. Solid State Phys 45:1–73

    CAS  Google Scholar 

  13. Okubo T (1988) Time-resolved analysis of a crystal-like structure-forming process of a monodisperse polystyrene sphere as studied by rapid-scanning spectrophotometry. J Chem Soc Faraday Trans 1(84):1163–1169

    Article  Google Scholar 

  14. Okubo T (1993) Polymer colloidal crystals. Prog Polym Sci 18:481–517

    Article  CAS  Google Scholar 

  15. Lowen H, Palberg T, Simon R (1993) Dynamical criterion for freezing of colloidal liquids. Phys Rev Lett 70:1557–1560

    Article  Google Scholar 

  16. Okubo T (1994) Phase diagram of ionic colloidal crystals. In: Macro-ion characterization. From dilute solutions to complex fluids. ACS Symp Ser 548. ACS Washington, DC, pp364-380

  17. Okubo T, Tsuchia A (2002) Spectroscopy of giant colloidal crystals. Forma 17:141–153

    Google Scholar 

  18. Okubo T (2002) Crystalline colloids. Encyclopedia of Surface and Colloid Science. Marcell Dekker, New York, In, pp. 1300–1309

    Google Scholar 

  19. Okubo T (2005) Colloidal crystal. In: Kinoshita S, Yoshioka S (eds) Structural colors in biological systems. Osaka Univ Press, Osaka, pp. 267–286

    Google Scholar 

  20. Okubo T (2008) Colloidal crystallization as compared with polymer crystallization. Polym J 40:882–890

    Article  CAS  Google Scholar 

  21. Russel WB (1990) On the dynamics of the disorder–order transition. Phase Transit 21:127–137

    Article  Google Scholar 

  22. Dhont JKG, Smits C, Lekkerkerker HNW (1992) A time-resolved static light scattering study on nucleation and crystallization in a colloidal system. J Colloid Interface Sci 152:386–401

    Article  CAS  Google Scholar 

  23. Verhaeghe NAM, van Blaaderen A (1994) Dispersions of rhodamin labeled silica spheres: synthesis, characterization and fluorescence conforcal scanning laser microscopy. Langmuir 10:1427–1438

    Article  Google Scholar 

  24. Butler S, Harrowell P (1995) Kinetics of crystallization in a shearing colloidal suspension. Phys Rev E 52:6424–6430

    Article  CAS  Google Scholar 

  25. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62

    Article  CAS  Google Scholar 

  26. Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30

    Article  CAS  Google Scholar 

  27. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  CAS  Google Scholar 

  28. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interf Sci 85:1–33

    Article  CAS  Google Scholar 

  29. Xia Y, Cates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713

    Article  CAS  Google Scholar 

  30. Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W (2000) Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles. Colloid Polym Sci 278:972–978

    Article  CAS  Google Scholar 

  31. Debord JD, Lyon LA (2000) Thermoresponsive photonic crystals. J Phys Chem B 104:6327–6331

    Article  CAS  Google Scholar 

  32. Xia Y (2001) Photonic crystals. Adv Mater 13:369

    Article  CAS  Google Scholar 

  33. Gao J, Hu Z (2002) Optical properties of N-isopropyl acrylamide microgel spheres in water. Langmuir 18:1360–1367

    Article  CAS  Google Scholar 

  34. Okubo T, Hase H, Kimura H, Kokufuta E (2002) Thermo-sensitive colloidal crystals of silica spheres in the presence of gel spheres of poly(N-isopropyl acrylamide). Langmuir 18:6783–6788

    Article  CAS  Google Scholar 

  35. Okubo T, Mizutani T, Okamoto J, Kimura K, Tsuchida A, Tauer K, Khrenov V, Kawaguchi H, Tsuji S (2006) Thermo-sensitive colloidal crystals in the presence of large spheres with poly(N-isopropyl acrylamide) shells. Colloid Polym Sci 285:351–358

    Article  CAS  Google Scholar 

  36. Crassous JJ, Ballauff M, Drechsler M, Schmidt J, Talmon Y (2006) Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy. Langmuir 22:2403–2406

    Article  CAS  Google Scholar 

  37. Crassous JJ, Wittemann A, Siebenburger M, Schrinner M, Drechsler M, Ballauff M (2008) Direct imaging of temperature-sensitive core-shell latex by cryogenic transmission electron microscopy. Colloid Polym Sci 286:805–812

    Article  CAS  Google Scholar 

  38. Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Ballauff M (2008) Quantitative analysis of polymer colloids by cryo-transmission electron microscopy. Langmuir 25:7862–7871

    Article  Google Scholar 

  39. Suzuki D, Horigome K, Yamagata T, Shibata K, Tsuchida A, Okubo T (2011) Colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). influence of degree of cross-linking of the gels. Colloid Polym Sci 289:1799–1808

    Article  CAS  Google Scholar 

  40. Okubo T, Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A (2011) Colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropyl acrylamide) with low degree of cross-linking. Colloid Polym Sci 289:1273–1281

    Article  CAS  Google Scholar 

  41. Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A, Okubo T (2012) Colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). influence of gel size. Colloid Polym Sci 290:107–117

    Article  CAS  Google Scholar 

  42. Okubo T, Suzuki D, Tsuchida A (2012) Drying dissipative structures of thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). influence of gel size. Colloid Polym Sci 290:1901–1911

    Article  CAS  Google Scholar 

  43. Okubo T (1986) Ordered solution structure of a monodispersed polystyrene latex as studied by the reflection spectrum method. J Chem Soc Faraday Trans 1(82):3163–3173

    Article  Google Scholar 

  44. Hachisu S, Kose A, Kobayashi Y, Takano K (1976) Segregation phenomena in monodisperse colloids. J Colloid Interface Sci 55:499–509

    Article  CAS  Google Scholar 

  45. Williams JC (1976) The segregation of particulate materials. A review. Powder Technol 15:245–251

    Article  Google Scholar 

  46. Rosato AD, Stradburg KJ, Prinz F, Swendsen RH (1987) Why the brazil nuts are on top: size segregation of particulate matter by shaking. Phys Rev Lett 58:1038–1040

    Article  Google Scholar 

  47. Vanell L, Rosato AD, Dave RN (1997) Rise-time regimes of a large sphere in vibrated bulk solids. Phys Rev Lett 78:1255–1258

    Article  Google Scholar 

  48. Okubo T, Tsuchida A, Okuda T, Fujitsuna K, Ishikawa M, Morita T, Toda T (1999) Kinetic analysis of colloidal crystallization in microgravity-aircraft experiments. Colloids Surf A 153:515–524(missprinting in part); A160:311–320

    Article  CAS  Google Scholar 

  49. Okubo T, Tsuchida A, Takahashi K, Taguchi K, Ishikawa M (2000) Kinetics of colloidal alloy crystallization of binary mixtures of monodispersed polystyrene and/or colloidal silica spheres having different sizes and densities in microgravity using aircraft. Colloid Polym Sci 278:202–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.S. and A.T. from Japan Society for the promotion of Science for Scientific Research (B) are highly appreciated. D.S. also acknowledges Grant-in-Aid for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (22685024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, D., Shibata, K., Tsuchida, A. et al. Thermo-sensitive colloidal crystals composed of monodisperse colloidal silica- and poly(N-isopropyl acrylamide) gel spheres. Colloid Polym Sci 293, 2763–2769 (2015). https://doi.org/10.1007/s00396-015-3661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3661-1

Keywords

Navigation