Skip to main content

Volume phase transition and related phenomena of polymer gels

  • Chapter
  • First Online:
Responsive Gels: Volume Transitions I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 109))

Abstract

This review covers the recent advances in studies of the volume phase transition and critical phenomena of polymer gels mostly carried out in our group from 1973 to the present. We aimed here to discuss intensively (i) the basic understanding of the transition from the viewpoints of structure, dynamics, kinetics, and equilibrium thermodynamics, (ii) technological applications of the volume transition, and (iii) the relation between the phase transition and biological interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

P:

pressure

V:

volume

T:

absolute temperature

n:

number of molecules

kB :

Boltzmann constant

a, b:

van der Waals constants

FVDW :

free energy of the van der Waals fluid

Tc :

critical temperature

κT :

isothermal compressibility

ρ:

density

ρR :

reduced density

TR :

reduced temperature

PR :

reduced pressure

TB :

Boyle temperature

ΔF:

free energy per site

ΔFM :

mixing free energy

ΔFel :

elastic free energy of gel

φ:

polymer volume fraction

φ0 :

polymer volume fraction at the reference state

χ:

Flory's interaction parameter

∏:

osmotic pressure

M :

osmotic pressure due to the mixing free energy

el :

osmotic pressure due to the elastic free energy

ion :

osmotic pressure due to the Donnan potential

a3 :

the volume of site

Nx :

degree of polymerization between crosslinks

f:

number of ionic groups on the chain between crosslinks

v:

microscopic gel volume (≡a3/φ)

Δh:

enthalpy contribution to χ

Δs:

entropy contribution to χ

Θ:

Flory's Θ temperature

T∏=0 :

temperature at ∏=0

τ:

reduced temperature

V/V0, φ0/φ:

degree of swelling

K:

osmotic modulus, bulk modulus

Ts :

spinodal temperature

u:

exponent for concentration dependence of ∏ for polymer solutions

νF :

Flory exponent for the polymer chain size

RF :

Flory radius

φF :

the initial volume fraction of polymers in the gel

P(r):

polymer segment distribution function

b:

statistical segment length

w:

third virial coefficient

S:

the reduced polymer network density

τ:

relaxation time

u:

displacement vector

\(\tilde \sigma\) :

stress tensor

uij :

strain tensor

μ:

shear modulus

x:

spatial coordinate

t:

time

ui :

the i-component of the displacement vector u

r, r:

spatial coordinate, (x, y, z), and its magnitude

q, q:

scattering vector and its magnitude

Es(q, t):

scattered electromagnetic field at (q, t)

g(1)(τ):

first order correlation function for the scattered electric field

g(2)(τ):

second order correlation function for the scattered intensity

D:

collective diffusion coefficient

D1 :

collective diffusion coefficient along the longitudinal direction

Dt :

collective diffusion coefficient along the transverse direction

η:

solvent viscosity

g(r):

spatial correlation function

c:

number concentration of the monomers in the system

ξ:

correlation length

Γ:

decay rate, relaxation rate

Y:

ratio of the ensemble average to time average of the scattered intensity

I(q):

scattered intensity

I(0):

scattered intensity at q=0

νF :

Flory exponent

IG(0):

zero angle scattered intensity for solid-like scattering

IL(0):

zero angle scattered intensity for solution-like scattering

Ξ:

characteristic length for solid-like non-uniformity

Rg :

radius of gyration of solid-like non-uniformity

κ−1 :

Debye length

S(x):

structure factor

x:

reduced scattering vector

r0 :

characteristic screening scale of Coulombic interaction by ideal chains

a:

segment length

lB :

Bjerrum length

s:

reduced charge concentration

t:

reduced temperature

zi :

valency of ions of kind i

φs, i :

salt concentration of kind i

h:

reduced solvent quality

qm :

scattering vector at peak

D:

long spacing of concentration fluctuations

d/d0 :

ratio of the diameter of a gel with respect to its diameter as prepared

Cv :

specific heat

ρC :

reduced density

δ:

critical exponent for the critical isotherm

δ:

critical exponent for the specific heat

αΠ :

critical exponent for the specific heat along isobar

β:

critical exponent for the order parameter

γ:

critical exponent for the susceptibility

ε:

reduced temperature

f:

friction coefficient

a:

final radius of cylindrical gel after swelling

Δa:

displacement

τ:

relaxation time for swelling

D0 :

collective diffusion constant

Fsh :

shear energy

T:

trace of the strain tensor uik

λ:

swelling rate ratio

Δ:

total change of the radius of the gel

M:

longitudinal modulus

R:

ratio of the shear modulus to the longitudinal modulus

De :

effective collective diffusion constant

Ka :

ionization constant

α:

degree of ionization

AAc:

acrylic acid

BIS:

N,N′-methylene-bisacrylamide

ConA:

concanavalin A

DDS:

dextran sulfate

DMSO:

dimethylsulfoxide

DLS:

dynamic light scattering

IPN:

interpenetrating network

MAPTAC:

methacryl-amido-propyl-trimethyl-ammonium-chloride

MP:

α-methyl-d-mannopyranoside

MSLLS:

microscope laser light scattering

NIPA:

N-isopropylacrylamide

SANS:

small-angle neutron scattering

11 References

  1. DeRossi D, Kajiwara K, Osada Y, Yamauchi A (1991) Polymer gels, Plenum, New York

    Google Scholar 

  2. Yamauchi A (ed) (1990) Organic polymer gels (Japanese). Gakkai, Tokyo

    Google Scholar 

  3. Kramer O (ed) (1988) Biological and Synthetic Polymer Networks, Elsevier, London

    Google Scholar 

  4. Clark AH, Ross-Murphy SB (1987) Adv Polym Sci 83: 60

    Google Scholar 

  5. Stepto RFT, Haward RN (1982) Development in Polymerization-3. Network Formation and Cyclization, Appl Sci, London

    Google Scholar 

  6. Stauffer D (1985) Introduction to Percolation Theory, Taylor & Francis, London

    Google Scholar 

  7. Masuda F (1987) Superabsorbent Polymers (in Japanese) Kyoritsu, Tokyo

    Google Scholar 

  8. Fushimi T (1990) Ideas of Applications of Superabsorbent Polymers (in Japanese). Kogyo Chosaki, Tokyo

    Google Scholar 

  9. Flory PJ (1957) Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY

    Google Scholar 

  10. DeGennes PG (1979) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York

    Google Scholar 

  11. Tanaka T (1981) Sci Am 244: 110

    Google Scholar 

  12. Dušek K, Patterson D (1968) J Polym Sci Part A-2, 6: 1209

    Google Scholar 

  13. Pititsen OB, Eizner YuE (1965) Biofizika 10: 3

    Google Scholar 

  14. Lifshitz IM, Grosberg AYu, Khokhlov AR (1978) Rev Modern Phys 50: 683–713

    Google Scholar 

  15. DeGennes PG (1972) Phys Lett A38: 339

    Google Scholar 

  16. Tanaka T, Hocker LO, Benedek GB (1973) J Chem Phys 59: 5151

    Google Scholar 

  17. Munch JP, Candau SJ, Duplessix R, Picot C, Herz J, Benoit R (1976) J Polym Sci 14: 1097

    Google Scholar 

  18. Tanaka T, Ishiwata S, Ishimoto C (1977) Phys Rev Lett 39: 474

    Google Scholar 

  19. Tanaka T (1978) Phys Rev Lett 40: 820

    Google Scholar 

  20. Hochberg A, Tanaka T, Nicoli D (1979) Phys Rev Lett 43: 217

    Google Scholar 

  21. Tanaka T, Fillmore DJ, Sun S-T, Nishio I, Swislow G, Shah A (1980) Phys Rev Lett 45: 1636

    Google Scholar 

  22. Amiya T, Tanaka T (1987) Macromolecules 20: 1162

    Google Scholar 

  23. Katayama T, Ohta A (1985) Macromolecules 18: 2781

    Google Scholar 

  24. Hirokawa Y, Tanaka T, Matsuo ES (1984) J Chem Phys 81: 6379

    Google Scholar 

  25. Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87: 1392

    Google Scholar 

  26. Otake K, Tsuji T, Konno M, Saito S (1988) J Chem Eng Japan 21: 443

    Google Scholar 

  27. Inomata H, Yagi Y, Saito S (1990) Macromolecules 29: 4887

    Google Scholar 

  28. Ichita H, Miyano Y, Kiyota y, Nakano Y (1991) Proc Gel Conference in Tokyo, Polymer Soc Japan, pp. 92–93

    Google Scholar 

  29. Ito S (1989) Collected papers of Kobunshi (in Japanese) 46: 437

    Google Scholar 

  30. Hirasa O (1987) Koubunshi 35: 1100

    Google Scholar 

  31. Otake K, Inomata H, Konno M, Saito S (1990) Macromolecules 23: 283

    Google Scholar 

  32. Kudo S, Kosaka K, Konno M, Saito S (1990) Polym Prep Jpn 39: 3239

    Google Scholar 

  33. Siegel RA, Firestone BA (1988) Macromolecules 21: 3254

    Google Scholar 

  34. Hirokawa Y, Tanaka T (1984) In: Marshall KC (ed) Microbial adhesion and aggregation, Springer, Berlin Heidelberg New York

    Google Scholar 

  35. Ricka J, Tanaka T (1984) Macromolecules 17: 2916

    Google Scholar 

  36. Ohmine I, Tanaka T (1982) J Chem Phys 77: 5725

    Google Scholar 

  37. Siegel RA, Faramalzian M, Firestone BA, Moxley BC (1988) J Controlled Release 8: 179

    Google Scholar 

  38. Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Macromolecules 24: 1605

    Google Scholar 

  39. Suzuki A, Tanaka T (1990) Nature 346: 345; Polym Prep Japan 39: 3239

    Google Scholar 

  40. Osada Y (1987) Adv Polym Sci 82: 1

    Google Scholar 

  41. Osada Y, Umezawa K, Yamauchi A (1988) Makromol Chem 189: 3859

    Google Scholar 

  42. DeRossi D, et al. (1988) Trans Am Soc Artif Inter Organs, XXXII, Makromol Chem 189: 3859

    Google Scholar 

  43. Kurauchi T, Shiga T, Hirose Y, Okada A (1991) Polymer Gels, pp 237–246, Plenum Press, New York

    Google Scholar 

  44. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Science 218: 467

    Google Scholar 

  45. Giannetti G, Hirose Y, Hirokawa Y, Tanaka T (1988) In: Carter FL et al. (eds) Molecular Electronic Devices, Elsevier, London

    Google Scholar 

  46. Annaka M, Tanaka T (1992) Nature 355: 430

    Google Scholar 

  47. Stanley HE (1971) Introduction to Phase Transition and Critical Phenomena, Oxford Univ Press, Oxford

    Google Scholar 

  48. Geissler E, Hecht AM, Horkay F, Zrinyi M (1988) Macromolecules 21: 2594

    Google Scholar 

  49. Mallam S, Horkay F, Hecht AM, Geissler E (1989) Macromolecules 22: 2256

    Google Scholar 

  50. Khokhlov AR (1980) Polymer 21: 376

    Google Scholar 

  51. Grosberg AYu, Khokhlov AR (1989) Statistical Physics of Macromolecules, Nauka, Moscow

    Google Scholar 

  52. Grosberg AYu, Nechaev SK, Shakhnovich EI (1988) J de Phys (Paris) 49: 2095

    Google Scholar 

  53. Khokhlov AR, Nechaev SK (1985) Phys Lett 112-A: 156

    Google Scholar 

  54. Pincus P (1976) Macromolecules 9: 386

    Google Scholar 

  55. Li Y (1989) PhD Dissertation, Massachusetts Institute of Technology

    Google Scholar 

  56. Li Y, Tanaka T (1989) J Chem Phys 90: 5161

    Google Scholar 

  57. Grosberg AYu, Nechaev SK (1991) Macromolecules 24: 2789

    Google Scholar 

  58. Landau LD, Lifshitz EM (1986) Theory of Elasticity, Pergamon Press

    Google Scholar 

  59. Berne BJ, Pecora R (1976) Dynamic Light Scattering, John Wiley & Sons

    Google Scholar 

  60. Chu B (1991) Laser Light Scattering, Academic Press, 2nd Ed

    Google Scholar 

  61. Siegert AJF, MIT Radiation Report, No. 465

    Google Scholar 

  62. Tanaka T (1985) In: Pecora R (ed) Dynamic Light Scattering, Chapt. 9, Plenum

    Google Scholar 

  63. Edwards SF (1966) Proc Phys Soc 88: 265

    Google Scholar 

  64. Geissler E, Hecht AM (1980) Macromolecules 13: 1276; (1981) 14: 185

    Google Scholar 

  65. Doi M, Edwards S (1980) The Theory of Polymer Dynamics, Oxford Univ Press, Clarendon

    Google Scholar 

  66. Onuki A (1989) Phys Rev A 39: 2308

    Google Scholar 

  67. Peters A, Candau SJ (1986) Macromolecules 19: 1952; (1988) 21: 2278

    Google Scholar 

  68. Matsuo ES, Sun S-T, Li Y, Tanaka T (1988) in preparation, and Matsuo ES, PhD Thesis Dept Applied Biol Sci, MIT

    Google Scholar 

  69. Orkisz M, unpublished data

    Google Scholar 

  70. Nishio I, Peetermans J, Tanaka T (1985) Cell Biophysics 7: 91

    Google Scholar 

  71. San Biagio PL, Newman J, Schick KL (1991) Macromolecules 24: 6794

    Google Scholar 

  72. Pusey PN, van Megen W (1989) Physica A157: 705

    Google Scholar 

  73. Candau S, Bastide J, Delsanti M (1982) Adv Polym Sci 44: 27

    Google Scholar 

  74. Bastide J, Boue F, Buzier M (1989) In: Molecular Basis of Polymer Networks 42: 48

    Google Scholar 

  75. Hecht AM, Duplessix R, Geissler E (1985) Macromolecules 18: 2167

    Google Scholar 

  76. Mallam S, Horkay F, Hecht AM, Renie AR, Geissler E (1991) Macromolecules 24: 543

    Google Scholar 

  77. Horkay F, Hecht AM, Mallam S, Geissler E, Rennie AR (1991) Macromolecules 24: 2896

    Google Scholar 

  78. Schosseler F, Moussaid A, Munch JP, Candau SJ (1991) J Phys II France 1: 1197

    Google Scholar 

  79. Schosseler F, Ilmain F, Candau SJ (1991) Macromolecules 24: 225

    Google Scholar 

  80. Shibayama M, Tanaka T, Han CC (1992) J Chem Phys 97: 6829 (1992)

    Google Scholar 

  81. Shibayama M, Tanaka T, Han CC (1992) J Chem Phys 97: 6842 (1992)

    Google Scholar 

  82. Cohen Y, Ramon O, Kopelman IJ, Mizrahi S, submitted

    Google Scholar 

  83. For example, Ise N, Okubo T, Hiragi Y, Kawai H, Hashimoto T, Fujimura M, Nakajima A, Hayashi H (1979) J Am Chem Soc 101: 5836

    Google Scholar 

  84. Borue VYu, Erukhimovich IYa (1988) Macromolecules 21: 3240

    Google Scholar 

  85. Joanny JF, Leibler L (1990) J Phys France 51: 545

    Google Scholar 

  86. Tokita M, Tanaka T (1991) J Chem Phys 95: 4613

    Google Scholar 

  87. Tokita M, Tanaka T (1991) Science 253: 1121

    Google Scholar 

  88. Bagnuls C, Beruillier C (1985) Phys Rev B23: 7209

    Google Scholar 

  89. Bagnuls C, Beruillier C (1985) Phys Lett 107A: 299

    Google Scholar 

  90. Fisher ME (1968) Phys Rev 176: 257; Fisher ME, Scesey PE (1970) Phys Rev A2: 825

    Google Scholar 

  91. Tanaka T, Fillmore DJ (1979) J Chem Phys 70: 1214

    Google Scholar 

  92. Li Y, Tanaka T (1990) J Chem Phys 92: 1365

    Google Scholar 

  93. Li Y, Tanaka T (1990) In: Onuki A, Kawasaki K (eds) Dynamics and Patterns in Complex Fluids, Springer-Verlag, Berlin, 52: 44

    Google Scholar 

  94. Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans (1985) J Phys Rev 22: 2455

    Google Scholar 

  95. Li Y, Tanaka T (1992) Annu Rev Mater Sci 22: 243

    Google Scholar 

  96. Tanford C (1980) The hydrophobic effect, Willey, New York

    Google Scholar 

  97. Joesten MD, Schaad LJ (1974) Hydrogen Bonding, Marcel Dekker, New York

    Google Scholar 

  98. Ilmain F, Tanaka T, Kokufuta E (1991) Nature 349: 400

    Google Scholar 

  99. Okano T, Bae YH, Kim SW, In: Kost J (ed) Modulated Control Release System, CRC Press (in press)

    Google Scholar 

  100. Okano T, Bae YH, Jacobs H, Kim SW (1990) J Controlled Release 11: 255

    Google Scholar 

  101. Bae YH, Okano T, Kim SW (1987) Makromol Chem Rapid Commun 8: 481; (1988) 9: 185

    Google Scholar 

  102. Bae YH, Okano T, Kim SW (1989) J Controlled Release 9: 271

    Google Scholar 

  103. Baranovsky YuV, Litmanovich AA, Papisov IM, Kabanov VA (1981) Europ Polym J 17: 969

    Google Scholar 

  104. Eustace DJ, Siano DB, Drake EN (1988) J Appl Polym Sci 35: 707

    Google Scholar 

  105. Osada Y (1979) J Polym Sci Polym Chem Ed 17: 3485

    Google Scholar 

  106. Tsuchida E, Abe K (1982) Interaction between macromolecules in solution. Springer, Berlin Heidelberg New York

    Google Scholar 

  107. Abe K, Koide M (1977) Macromolecules 10: 1259

    Google Scholar 

  108. Edwards S, King PR, Pincus P (1980) Ferroelectrics 30: 3

    Google Scholar 

  109. Qian C, Kholodenko AL (1988) J Chem Phys 89: 5273

    Google Scholar 

  110. Khokhlov AR, Kachaturian KA (1982) Polymer 23: 1742

    Google Scholar 

  111. Higgs P, Joanny J-F (1991) J Chem Phys 94: 1543

    Google Scholar 

  112. Kantor Y, Kardar M (to be published)

    Google Scholar 

  113. Myoga A, Katayama S (1987) Polym Prep Japan 36: 2852

    Google Scholar 

  114. Hoffman AS (1987) J Controlled Release 6: 297

    Google Scholar 

  115. Hoffman AS, Ratner BD (1976) ACS Symposium Series 31: 1

    Google Scholar 

  116. Hoffman AS, Afrasiabi A, Dong LC (1986) J Controlled Release 4: 213

    Google Scholar 

  117. Hanson SR, Harker LA, Ratner BD, Hoffman AS (1980) Biomaterials; (1982) J Willey & Sons, London, pp 95–126

    Google Scholar 

  118. Suzuki M, Sawada Y (1980) J Appl Phys 51: 5667

    Google Scholar 

  119. Suzuki M, Tateishi T, Ushida T, Fujishige S (1986) Biorheology 23: 274

    Google Scholar 

  120. Grodzinsky AJ, Melcher JR (1976) IEEE Trans Biomed Eng 23: 421

    Google Scholar 

  121. Huang X, Unno H, Akehata T, Hirasa O (1987) J Chem Eng Japan 20: 123; (1988) 21: 10; (1987) 21: 651

    Google Scholar 

  122. Katchalsky A, Spitnik P (1947) J Polym Sci 2: 432

    Google Scholar 

  123. Albin GW, Horbett TA, Miller SR, Ricker NJ (1987) J Controlled Release 6: 267

    Google Scholar 

  124. Dong LC, Hoffman AS (1986) J Controlled Release 4: 213

    Google Scholar 

  125. Park TG, Hoffman AS (1988) Appl Biochem Biotech 19: 1

    Google Scholar 

  126. Kokufuta E, Zhang Y-Q, Tanaka T (1991) Nature 351: 302

    Google Scholar 

  127. Onuki A (1988) Phys Rev A 38: 2192

    Google Scholar 

  128. Onuki A (1988) J Phys Soc Japan 56: 699, 1868

    Google Scholar 

  129. Hirotsu S, Onuki A (1989) 58: 1508

    Google Scholar 

  130. Ishii K, Annaka M, Tanaka T (to be published)

    Google Scholar 

  131. Annaka M (unpublished results)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Dušek

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Shibayama, M., Tanaka, T. (1993). Volume phase transition and related phenomena of polymer gels. In: Dušek, K. (eds) Responsive Gels: Volume Transitions I. Advances in Polymer Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56791-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-56791-7_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56791-2

  • Online ISBN: 978-3-540-47737-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics