Skip to main content
Log in

Colloidal crystallization of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Influence of gel size

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Influence of the gel size on the morphology, phase diagram, and reflection spectroscopy of the colloidal crystals of thermo-sensitive gel spheres, poly (N-isopropylacrylamide) (pNIPAm), was discussed by adding the data of two gel samples of pNIPAm(400–5) and pNIPAm(600–5) of 412 nm (at 25 °C) and 220 nm (at 45 °C) and of 517 nm (at 20 °C) and 294 nm (at 45 °C), respectively. Colloidal single crystals formed, but not so large compared with the giant crystals of small pNIPAm gels reported previously. The suspensions even with ion-exchange resins were turbid and hard to observe the single crystals clearly with the naked eyes as gel size increased. The critical concentration of melting decreased sharply as the suspensions were deionized with coexistence of the mixtures of cation- and anion-exchange resins. The critical concentration increased as the gel size increased and/or dispersion temperature increased. Density of the gel spheres increased as their size increased. These results demonstrated that the colloidal crystallization takes place by the extended electrical double layers formed around the gel spheres in addition of the excluded volume effect of the gels. Contribution of the electrical double layers on the crystallization increased sharply as temperature increased and gel concentration decreased, respectively. The contribution also increased slightly as sphere size increased, when comparison was made at the same gel concentration in wt.%. The present work clarified that the colloidal interfaces, which are inevitable for the formation of the electrical double layers, are formed between the water phase and gel spheres, though the gel spheres contain a lot of water molecules at the inner sphere region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okubo T (1996) Colloid Surf A 109:77

    Article  CAS  Google Scholar 

  2. Alexander S, Chaikin PM, Grant P, Morales GM, Pincus P, Hone D (1984) J Chem Phys 80:5776

    Article  CAS  Google Scholar 

  3. Okubo T (1993) Prog Polym Sci 18:481

    Article  CAS  Google Scholar 

  4. Garbow N, Evers M, Palberg T, Okubo T (2004) J Pjys Condens Matter 16:3835

    Article  CAS  Google Scholar 

  5. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JThG (1970) In: Goldfinger G (ed) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New York, pp 15–44

    Google Scholar 

  6. Hiltner PA, Papir YS, Krieger IM (1971) J Phys Chem 75:1881

    Article  CAS  Google Scholar 

  7. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) J Colloid Interf Sci 44:330

    Article  CAS  Google Scholar 

  8. Williams R, Crandall RS, Wojtowicz PJ (1976) Phys Rev Lett 37:348

    Article  Google Scholar 

  9. Mitaku S, Ohtsuki T, Enari K, Kishimoto A, Okano K (1978) Jpn J Appl Phys 17:305

    Article  CAS  Google Scholar 

  10. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    Article  CAS  Google Scholar 

  11. Pieranski P (1983) Contemp Phys 24:25

    Article  CAS  Google Scholar 

  12. Ottewill RH (1985) Ber Bunseng Phys Chem 89:517

    CAS  Google Scholar 

  13. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Phys Rev Lett 57:1733

    Article  CAS  Google Scholar 

  14. Pusey PN, van Megen W (1986) Nature 320:340

    Article  CAS  Google Scholar 

  15. Okubo T (1988) Acc Chem Res 21:281

    Article  CAS  Google Scholar 

  16. Sood AK (1991) Solid State Phys 45:2

    Google Scholar 

  17. Okubo T (1988) J Chem Soc Faraday Trans 1 84:1163

    Google Scholar 

  18. Lowen H, Palberg T, Simon R (1993) Phys Rev Lett 70:1557

    Article  Google Scholar 

  19. Okubo T (1994) In: Macro-ion characterization. From dilute solutions to complex fluids. ACS Symp Ser 548. ACS Washington, DC, pp 364–380

  20. Okubo T, Tsuchia A (2002) Forma 17:141

    Google Scholar 

  21. Okubo T (2002) In: Hubbard A (ed) Encyclopedia of surface and colloid science. Marcell Dekker, New York, pp 1300–1309

    Google Scholar 

  22. Okubo T (2005) In: Kinoshita S, Yoshioka S (eds) Structural colors in biological systems. Osaka Univ Press, p 267

  23. Okubo T (2008) Polym J 40:882

    Article  CAS  Google Scholar 

  24. Russel WB (1990) Phase Transition 21:127

    Article  Google Scholar 

  25. Dhont JKG, Smits C, Lekkerkerker HNW (1992) J Colloid Interface Sci 152:386

    Article  CAS  Google Scholar 

  26. Verhaeghe NAM, van Blaaderen A (1994) Langmuir 10:1427

    Article  Google Scholar 

  27. Butler S, Harrowell P (1995) Phys Rev E 52:6424

    Article  CAS  Google Scholar 

  28. Okubo T, Tsuchida A (2002) Colloid Polym Sci 280:438

    Article  CAS  Google Scholar 

  29. Shibayama M, Tanaka T (1993) Adv Polym Sci 109:1

    CAS  Google Scholar 

  30. Shibayama M (1998) Macromol Chem Phys 199:1

    Article  CAS  Google Scholar 

  31. Holtz JH, Asher SA (1997) Nature 389:829

    Article  CAS  Google Scholar 

  32. Pelton R (2000) Adv Colloid Interf Sci 85:1

    Article  CAS  Google Scholar 

  33. Xia Y, Cates B, Yin Y, Lu Y (2000) Adv Mater 12:693

    Article  CAS  Google Scholar 

  34. Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W (2000) Colloid Polym Sci 278:972

    Article  CAS  Google Scholar 

  35. Debord JD, Lyon LA (2000) J Phys Chem B 104:6330

    Article  Google Scholar 

  36. Xia Y (2001) Adv Mater 13:369

    Article  CAS  Google Scholar 

  37. Gao J, Hu Z (2002) Langmuir 18:1360

    Article  CAS  Google Scholar 

  38. Okubo T, Hase H, Kimura H, Kokufuta E (2002) Langmuir 18:6783

    Article  CAS  Google Scholar 

  39. Okubo T, Mizutani T, Okamoto J, Kimura K, Tsuchida A, Tauer K, Khrenov V, Kawaguchi H, Tsuji S (2006) Colloid Polym Sci 285:351

    Article  CAS  Google Scholar 

  40. Crassous JJ, Ballauff M, Drechsler M, Schmidt J, Talmon Y (2006) Langmuir 22:2403

    Article  CAS  Google Scholar 

  41. Crassous JJ, Wittemann A, Siebenburger M, Schrinner M, Drechsler M, Ballauff M (2008) Colloid Polym Sci 286:805

    Article  CAS  Google Scholar 

  42. Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Ballauff M (2008) Langmuir 25:7862

    Article  Google Scholar 

  43. Okubo T, Suzuki D, Yamagata T, Katsuno A, Sakurai M, Kimura H, Tsuchida A (2011) Colloid Polym Sci 289:291

    Article  CAS  Google Scholar 

  44. Okubo T, Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A (2011) Colloid Polym Sci 289:1273

    Article  CAS  Google Scholar 

  45. Suzuki D, Horigome K, Yamagata T, Shibata K, Tsuchida A, Okubo T (2011) Colloid Polym Sci. doi:10.1007/s00396-011-2499-4

  46. Okubo T (1992) Naturwissenschaften 79:317

    Article  CAS  Google Scholar 

  47. Okubo T (1994) Langmuir 10:1695

    Article  CAS  Google Scholar 

  48. Okubo T (1994) Colloid Polym Sci 271:190

    Article  Google Scholar 

  49. Okubo T (1994) Langmuir 10:3529

    Article  CAS  Google Scholar 

  50. Okubo T (1995) J Colloid Interf Sci 171:55

    Article  CAS  Google Scholar 

  51. Okubo T, Fujita H (1996) Colloid Polym Sci 274:368

    Article  CAS  Google Scholar 

  52. Okubo T, Fujita H, Kiriyama K, Yamaoka H (1996) Colloid Polym Sci 274:73

    Article  CAS  Google Scholar 

  53. Okubo T, Yoshimi H, Shimizu T, Ottewill RH (2000) Colloid Polym Sci 278:469

    Article  CAS  Google Scholar 

  54. Okubo T, Kimura H, Hase H, Lovell PA, Errington N, Thongnoi S (2005) Colloid Polym Sci 283:393

    Article  CAS  Google Scholar 

  55. Okubo T (2006) Colloid Polym Sci 285:245

    Article  CAS  Google Scholar 

  56. Okubo T (1986) J Chem Soc Faraday Trans 1 82:3163

    Google Scholar 

Download references

Acknowledgments

D.S. acknowledges Grant-in-Aid for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (22685024). Financial supports to T.O. from the Ministry of Education, Culture, Sports, Science, and Technology, Japan for Exploratory Research and to D.S., T.O., and A.T. from Japan Society for the Promotion of Science for Scientific Research (B) are highly appreciated. The research funds from REX (Tokyo, Japan) to T.O. are thanked deeply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, D., Yamagata, T., Horigome, K. et al. Colloidal crystallization of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Influence of gel size. Colloid Polym Sci 290, 107–117 (2012). https://doi.org/10.1007/s00396-011-2534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2534-5

Keywords

Navigation