Skip to main content
Log in

Kappa carrageenan-g-poly (acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this article, a novel triple-stimuli hydrogel was prepared by simultaneous formation of super paramagnetic iron oxide nanoparticles (SPION) and crosslinking of poly (acrylic acid) grafted onto kappa carrageenan (κC-g-PAA). The structure, thermal stability, surface morphology, and magnetic property of the κC-g-PAA/SPION hydrogel were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy dispersive X-ray analysis (SEM–EDAX), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Moreover, swelling capacity of the obtained hydrogel was measured at different temperature, pH, and magnetic-field to assess the sensitivity of κC-g-PAA/SPION hydrogel. This synthetic hydrogel was also examined as a controlled drug delivery system and defrasirox release was investigated at different temperature, pH, and magnetic-field. The in vitro antibacterial activity of κC-g-PAA/SPION hydrogel was studied against Escherichia coli and Staphylococcus aureus bacteria where the results showed no antibacterial activity of this new hydrogel. In vitro biocompatibility experiments were undertaken using human bladder epithelial cell line HTB 5637. These results indicated the synthesized κC-g-PAA/SPION hydrogel are nontoxic that will be useful for biomedical applications.

We introduce a novel triple-stimuli and biocompatible kappa-carrageenan-g-poly(acrylic acid)/SPION nanocomposite as a drug delivery system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang C, Huang H, Hsu C, Shyu Y, Yang BB (2013) Inactivation and morphological damage of Vibrio parahaemolyticus treated with high hydrostatic pressure. Food Control 32:348–353

    Article  CAS  Google Scholar 

  2. Yu S, Hsieh H, Pang J, Tang D, Shih C, Tsai M, Tsai Y, Mi F (2013) Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocolloids 32:9–19

    Article  CAS  Google Scholar 

  3. Zheng K, Zou A, Yang X, Liu F, Xia Q, Ye R, Mu B (2013) The effect of polymer–surfactant emulsifying agent on the formation and stability of α-lipoic acid loaded nanostructured lipid carriers (NLC). Food Hydrocolloids 32:72–78

    Article  CAS  Google Scholar 

  4. Zhang S, Coultas KA (2013) Identification of plumbagin and sanguinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int J Parasitol Drugs Drug Resist 3:28–34

    Article  Google Scholar 

  5. Dunjic-Kostic B, Ivkovic M, Radonjic NV, Petronijevic ND, Pantovic M (2013) Melancholic and atypical major depression — Connection between cytokines, psychopathology and treatment. Prog Neuro-Psychopharmacol Biol Psychiatry 43:1–6

    Article  CAS  Google Scholar 

  6. Raza K, Singh B, Singal P, Wadhwa S, Katare OP (2013) Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B 105:67–74

    Article  CAS  Google Scholar 

  7. Aguzzi C, Viseras C, Cerezo P, Salcedo I, Sánchez-Espejo R, Valenzuela C (2013) Release kinetics of 5-aminosalicylic acid from halloysite. Colloids Surf B 105:75–80

    Article  CAS  Google Scholar 

  8. Zeng J, Huang H, Liu S, Xu H, Huang J, Yu J (2013) Hollow nanosphere fabricated from β-cyclodextrin-grafted α, β-poly(aspartic acid) as the carrier of camptothecin. Colloids Surf B 105:120–127

    Article  CAS  Google Scholar 

  9. Luo Y, Teng Z, Wang X, Wang Q, Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocolloids 31:332–339

  10. Li K, Yu L, Liu X, Chen C, Chen Q, Ding J (2013) A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 34:2834–2842

    Article  CAS  Google Scholar 

  11. Jung J, Arnold RD, Wicker L (2013) Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf B 104:116–121

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang Z, Xu L, Li X, Chen H (2013) Hydrogels of halogenated Fmoc-short peptides for potential application in tissue engineering. Colloids Surf B 104:163–168

    Article  CAS  Google Scholar 

  13. Bardajee GR, Hooshyar Z, Rezanezhad H (2012) A novel and green biomaterial based silver nanocomposite hydrogel: Synthesis, characterization and antibacterial effect. J Inorg Biochem 117:367–373

    Article  CAS  Google Scholar 

  14. Bardajee GR, Pourjavadi A, Soleyman R (2011) Novel nano-porous hydrogel as a carrier matrix for oral delivery of tetracycline hydrochloride. Colloids Surf A 392:16–24

    Article  CAS  Google Scholar 

  15. Bardajee GR, Pourjavadi A, Ghavami S, Soleyman R, Jafarpour F (2011) UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon. J Photochem Photobiol 102:232–240

    Article  CAS  Google Scholar 

  16. Luo Y, Teng Z, Wang X, Wang Q (2013) Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocolloids 31:332–339

    Article  CAS  Google Scholar 

  17. Conti B, Colzani B, Papetti A, Mascherpa D, Dorati R, Genta I, Pruzzo C, Signoretto C, Zaura E, Lingström P, Ofek I, Wilson M, Spratt DA, Gazzani G (2013) Adhesive microbeads for the targeting delivery of anticaries agents of vegetable origin. Food Chem 138:898–904

    Article  CAS  Google Scholar 

  18. Gurunathan S, Han JW, Eppakayala V, Kim J (2013) Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloids Surf B 105:58–66

    Article  CAS  Google Scholar 

  19. Jana S, Saha A, Nayak AK, Sen KK, Basu SK (2013) Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B 105:303–309

    Article  CAS  Google Scholar 

  20. Roux R, Ladavière C, Montembault A, Delair T (2013) Particle assemblies: Toward new tools for regenerative medicine. Mater Sci Eng C 33:997–1007

    Article  CAS  Google Scholar 

  21. Yeh J, Yang H, Hsu Y, Su C, Lee T, Lou S (2013) Synthesis and characteristics of biodegradable and temperature responsive polymeric micelles based on poly(aspartic acid)-g-poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide). Colloids Surf A 421:1–8

    Article  CAS  Google Scholar 

  22. Haldar S, Maji SK (2013) Role of non-covalent interactions in the molecular organization of N-n-hexadecanoyl amino acid amphiphiles with hydrophobic Cα-side chains in Tris buffer (pH 9.3). Colloids Surf A 420:10–21

    Article  CAS  Google Scholar 

  23. Dadsetan M, Taylor KE, Yong C, Bajzer Z, Lu L, Yaszemski MJ (2013) Controlled release of doxorubicin from pH-responsive microgels. Acta Biomater 9:5438–5446

    Article  CAS  Google Scholar 

  24. Rodrigues LAS, Figueiras A, Veiga F, Freitas RM, Nunes LCC, Filho ECS, Leite CMS (2013) The systems containing clays and clay minerals from modified drug release: A review. Colloids Surf B 103:642–651

    Article  CAS  Google Scholar 

  25. Zhou Y, Fan X, Xue D, Xing J, Kong J (2013) Thermosensitive supramolecular hydrogels from atom transfer radical polymerization of polypseudorotaxanes self-assembled by triblock copolymer and α-cyclodextrins. React Funct Polym 73:508–517

    Article  CAS  Google Scholar 

  26. Cheng Y, Yang S, Liu C, Gefen A, Lin F (2013) Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydr Polym 92:1512–1519

    Article  CAS  Google Scholar 

  27. Sun X, Wang H, Jing Z, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366

    Article  CAS  Google Scholar 

  28. Li WM, Chen SY, Liu DM (2013) In situ doxorubicin–CaP shell formation on amphiphilic gelatin–iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater 9:5360–5368

    Article  CAS  Google Scholar 

  29. Fana T, Li M, Wub X, Li M, Wu Y (2011) Preparation of thermoresponsive and pH-sensitivity polymer magnetic hydrogel, nanospheres as anticancer drug carriers. Colloids Surf B 88:593–600

    Article  Google Scholar 

  30. Yang L, Guo C, Jia L, Xie K, Shou Q, Liu H (2010) Fabrication of Biocompatible Temperature- and pH-Responsive Magnetic Nanoparticles and Their Reversible Agglomeration in Aqueous Milieu. Ind Eng Chem Res 49:8518–8525

    Article  CAS  Google Scholar 

  31. Wang Y, Dong A, Yuan Z, Chen D (2012) Fabrication and characterization of temperature-, pH- and magnetic-field-sensitive organic/inorganic hybrid poly (ethylene glycol)-based hydrogels. Colloids Surf A 415:68–76

    Article  CAS  Google Scholar 

  32. Peppas NA, Merrill EW (1976) Poly(vinyl alcohol) hydrogels: Reinforcement of radiation-crosslinked networks by crystallization. J Polym Sci Polym Chem Educ 14:441–457

    Article  CAS  Google Scholar 

  33. Bardajee GR, Pourjavadi A, Soleyman R, Sheikh N (2008) Irradiation mediated synthesis of a superabsorbent hydrogel network based on polyacrylamide grafted onto salep. Nucl Instrum Meth Phys Res Sect B 266:3932–3938

    Article  CAS  Google Scholar 

  34. Bardajee GR, Pourjavadi A, Soleyman R, Sheikh N (2010) Gamma irradiation mediated synthesis of a new superabsorbent hydrogel network based on poly(acrylic acid) grafted onto salep. J Iran Chem Soc 7:652–662

    Article  CAS  Google Scholar 

  35. Güven O, Şen M, Karadağ E, Saraydın D (1999) A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes. Radiat Phys Chem 56:381–386

    Article  Google Scholar 

  36. Zhou L, He B, Zhang F (2012) Facile One-Pot Synthesis of Iron Oxide Nanoparticles Cross-linked, Magnetic Poly(vinyl alcohol) Gel Beads for Drug Delivery. ACS Appl Mater Interfaces 4:192–199

    Article  CAS  Google Scholar 

  37. Mihaila SM, Gaharwar AK, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2012) Photocrosslinkable Kappa-Carrageenan Hydrogels for Tissue Engineering Applications. Adv Healthc Mater. doi:10.1002/adhm.201200317

    Google Scholar 

  38. Chen J, Liu M, Chen S (2009) Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N, N-diethylacrylamide) semi-IPN hydrogel. Mater Chem Phys 115:339–346

    Article  CAS  Google Scholar 

  39. Jing R, Yanqun Z, Jiuqiang L, Hongfei H (2001) Radiation synthesis and characteristic of IPN hydrogels composed of poly(diallyldimethylammonium chloride) and Kappa-Carrageenan. Radiat Phys Chem 62:277–281

    Article  Google Scholar 

  40. Salvemini D, Wang Z, Wyatt PS, Bourdon DM, Marino MH, Manning PT, Currie MG (1996) Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol 118:829–838

    Article  CAS  Google Scholar 

  41. Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40:1363–1370

    Article  CAS  Google Scholar 

  42. Francis S, Kumar M, Varshney L (2004) Radiation synthesis of superabsorbent poly(acrylic acid)–carrageenan hydrogels. Radiat Phys Chem 69:481–486

    Article  CAS  Google Scholar 

  43. Bardajee GR, Pourjavadi A, Sheikh N, Amini-Fazl MS (2008) Grafting of acrylamide onto kappa-carrageenan via γ-irradiation: Optimization and swelling behavior. Radiat Phys Chem 77:131–137

    Article  Google Scholar 

  44. Abd El-Mohdy HL, Abd El-Rehim HA (2009) Radiation synthesis of kappa-carrageenan/acrylamide graft copolymers as superabsorbents and their possible applications. J Polym Res 16:63–72

    Article  CAS  Google Scholar 

  45. Pourjavadi A, Ghasemzadeh H (2007) Carrageenan-g-poly(acrylamide)/poly(vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: Synthesis, characterization, and swelling behavior. Polym Eng Sci 47:1388–1395

    Article  CAS  Google Scholar 

  46. Hosseinzadeh H, Pourjavavdi A, Zohuriaan-Mehr MJ (2004) Modified carrageenan. 2. Hydrolyzed crosslinked κ-carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity. J Biomater Sci Polym Ed 15:1499–1511

    Article  CAS  Google Scholar 

  47. Wan S, Huang J, Yan H, Liu K (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem 16:298–303

    Article  CAS  Google Scholar 

  48. Bardajee GR, Hooshyar Z (2013) Novel potentially biocompatible nanoporous hydrogel based on poly ((2-dimethylaminoethyl) methacrylate) grafted onto salep: synthesis, swelling behavior and drug release study. J Polym Res 2013(20):67–74

    Article  Google Scholar 

  49. Liu T, Hu S, Liu T, Liu D, Chen S (2006) Magnetic-Sensitive Behavior of Intelligent Ferrogels for Controlled, Release of Drug. Langmuir 22:5974–5978

    Article  CAS  Google Scholar 

  50. Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Magnetic polymer beads: Recent trends and developments in synthetic, design and applications. Eur Polym J 47:542–559

    Article  CAS  Google Scholar 

  51. Sivalingam G, Karthik R, Madras G (2003) Effect of Metal Oxides on Thermal Degradation of Poly(vinyl acetate) and Poly(vinyl chloride) and Their Blends. Ind Eng Chem Res 2003(42):3647–3653

    Article  Google Scholar 

  52. Gorghiu LM, Jipa S, Zaharescu T, Setnescu R, Mihalcea I (2004) The effect of metals on thermal degradation of polyethylenes. Polym Degrad Stab 84:7–11

    Article  CAS  Google Scholar 

  53. Serra L, Doménech J, Peppas NA (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27:5440–5451

    Article  CAS  Google Scholar 

  54. Ying E, Hwang H (2010) In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci Total Environ 408:4475–4481

    Article  CAS  Google Scholar 

  55. Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009) An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. J Colloid Interface Sci 336:510–518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the PNU and INSF for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Rezanejade Bardajee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardajee, G.R., Hooshyar, Z. & Rastgo, F. Kappa carrageenan-g-poly (acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system. Colloid Polym Sci 291, 2791–2803 (2013). https://doi.org/10.1007/s00396-013-3018-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3018-6

Keywords

Navigation