Skip to main content
Log in

Structural characterisation of titania or silane-grafted TiO2-SiO2 oxide composite and influence of ionic strength or electrolyte type on their electrokinetic properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The electrokinetic properties of commercial titania and TiO2-SiO2 oxide composite, precipitated from an emulsion system with cyclohexane as the organic phase, are described. To extend the possible range of applications of the TiO2-SiO2 oxide composite, its surface was modified with selected alkoxysilanes: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane and vinyltrimethoxysilane. Modification with selected alkoxysilanes leads to the introduction of new chemical groups on the TiO2-SiO2 surface, which changes its initial properties and also the surface charge, manifested by the values of zeta potential. This study was undertaken to establish the effect of the type and amount of the modifier and type and ionic strength of the electrolyte on the zeta potential of the modified TiO2-SiO2 oxide composite and thus on the stability of the colloidal system. The powders were characterised by FTIR and elemental analysis to confirm the effectiveness of the surface modification. The structure of TiO2-SiO2 oxide composite was resolved by the wide-angle X-ray scattering method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Veronovski N, Andreozzi P, La Mesa C et al (2010) Stable TiO2 dispersions for nanocoating preparation. Surf Coat Technol 204:1445–1451

    Article  CAS  Google Scholar 

  2. Panagiotou GD, Petsi T, Bourikas K et al (2008) Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach. Adv Colloid Interface Sci 142:20–42

    Article  CAS  Google Scholar 

  3. Ridley MK, Hackley VA, Machesky ML (2006) Characterization and surface-reactivity of nanocrystalline anatase in aqueous solutions. Langmuir 22:10972–10982

    Article  CAS  Google Scholar 

  4. Chun H, Yizhong W, Hongxiao T (2001) Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes. Appl Catal, B 30:277–285

    Article  CAS  Google Scholar 

  5. Xu Y, Langford CH (1997) Photoactivity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y. J Phys Chem B 101:3115–3125

    Article  CAS  Google Scholar 

  6. Murashkevich AN, Lavitskaya AS, Alisienok OA et al (2009) Fabrication and properties of SiO2/TiO2 composites. Inorg Mater 45:1146–1152

    Article  CAS  Google Scholar 

  7. Bellardita M, Addamo M, Di Paola A et al (2010) Photocatalytic activity of TiO2/SiO2 systems. J Hazard Mater 174:707–713

    Article  CAS  Google Scholar 

  8. Nilchi A, Janitabar-Darzi S, Mahjoub AR et al (2010) New TiO2/SiO2 nanocomposites—phase transformations and photocatalytic studies. Colloids Surf A Physicochem Eng Aspects 361:25–30

    Article  CAS  Google Scholar 

  9. Zhan S, Chen D, Jiao X et al (2007) Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties. Chem Commun 20:2043–2045

    Article  Google Scholar 

  10. Ren S, Zhao X, Zhao L et al (2009) Preparation of porous TiO2/silica composites without any surfactants. J Solid State Chem 182:312–316

    Article  CAS  Google Scholar 

  11. Yaremko ZM, Tkachenko NH, Hellmann C et al (2006) Redispergation of TiO2 particles in aqueous solutions. J Colloid Interface Sci 296:565–571

    Article  CAS  Google Scholar 

  12. Hunter RJ (1981) Zeta potential in colloid science. Academic, New York

    Google Scholar 

  13. Kosmulski M, Rosenholm JB (2004) High ionic strength electrokinetics of anatase in the presence of multivalent inorganic ions. Colloids Surf A Physicochem Eng Aspects 248:121–126

    Article  CAS  Google Scholar 

  14. Kosmulski M, Gustafsson J, Rosenholm JB (1999) Ion specificity and viscosity of rutile dispersions. Colloid Polym Sci 277:550–556

    Article  CAS  Google Scholar 

  15. Kosmulski M, Dukhin AS, Priester T et al (2003) Multilaboratory study of the shifts in the IEP of anatase at high ionic strengths. J Colloid Interface Sci 263:152–155

    Article  CAS  Google Scholar 

  16. Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface Sci 99:255–264

    Article  CAS  Google Scholar 

  17. Kosmulski M (2001) Chemical properties of material surfaces. Marcel Dekker, New York

    Book  Google Scholar 

  18. Kosmulski M, Durand-Vidal S, Gustafsson J et al (1999) Charge interactions in semi-concentrated titania suspensions at very high ionic strengths. Colloids Surf A Physicochem Eng Aspects 157:245–259

    Article  CAS  Google Scholar 

  19. Gustafsson J, Nordenswan E, Rosenholm JB (2003) Consolidation behaviour in sedimentation of TiO2 suspensions in the presence of electrolytes. J Colloid Interface Sci 258:235–243

    Article  CAS  Google Scholar 

  20. Jesionowski T, Ciesielczyk F, Krysztafkiewicz A (2010) Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater Chem Phys 119:65–74

    Article  CAS  Google Scholar 

  21. Jesionowski T, Krysztafkiewicz A (2000) Comparison of the techniques used to modify amorphous hydrated silicas. J Non-Cryst Solids 277:45–57

    Article  CAS  Google Scholar 

  22. Roy SK, Sengupta PK (1988) Electrical properties and the surface characteristics of lanthanum oxide/water interface. J Colloid Interface Sci 125:340–343

    Article  CAS  Google Scholar 

  23. Janusz W, Gałgan A (2001) Electrical double layer at manganese oxides/1:1 electrolyte solution interface. Physicochem Probl Miner Process 35:31–41

    CAS  Google Scholar 

  24. Berendsen GE, de Golan L (1978) Preparation and chromatographic properties of some chemically bonded phases for reversed-phase liquid chromatography. J Liq Chromatogr 1:561–586

    Article  CAS  Google Scholar 

  25. Ntalikwa JW, Bryant R, Zunzu JSM (2001) Electrophoresis of colloidal α-alumina. Colloid Polym Sci 279:843–849

    Article  CAS  Google Scholar 

  26. Sonnefeld J (2001) On the influence of background electrolyte concentration on the position of the isoelectric point and the point of zero charge. Colloids Surf A Physicochem Eng Aspects 190:179–183

    Article  CAS  Google Scholar 

  27. Johnson SB, Scales PJ, Healy TW (1999) The binding of monovalent electrolyte ions on a-alumina. I. Electroacoustic studies at high electrolyte concentrations. Langmuir 15:2836–2843

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Centre of Science research grant no. 2011/01/B/ST8/03961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teofil Jesionowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowacka, M., Siwińska-Stefańska, K. & Jesionowski, T. Structural characterisation of titania or silane-grafted TiO2-SiO2 oxide composite and influence of ionic strength or electrolyte type on their electrokinetic properties. Colloid Polym Sci 291, 603–612 (2013). https://doi.org/10.1007/s00396-012-2762-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2762-3

Keywords

Navigation