Skip to main content
Log in

Transcrystallization in nanofiber bundle/isotactic polypropylene composites: effect of matrix molecular weight

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polyamide 66 (PA 66) nanofiber bundles were first electrospun and then introduced into isotactic polypropylene (iPP) melts to prepare nanofiber bundle/iPP composites. To reveal the influences of matrix molecular weight (M n ) on the transcrystalline layer, three kinds of iPP with different M n were adopted. Polarized optical microscope was employed to investigate the transcrystallinity. In the presence of PA 66 nanofiber bundle, the heterogeneous nucleation distinctly happened in iPP melts. Moreover, the higher the iPP M n , the denser the nuclei. Both a decrease in matrix M n and an increase in isothermal crystallization temperature led to an increase in the induction time. The maximum temperature at which the transcrystalline layer can be optically observed increased with the increase of M n . The growth rate of transcrystallinity decreased with the increasing M n and crystallization temperature. Moreover, selective melting of the transcrystalline layers confirmed that it was merely composed of α form crystal for all composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang SJ, Minus ML, Zhu LB, Wong CP, Kumar S (2008) Polymer 49:1356–1364

    Article  CAS  Google Scholar 

  2. Thomason JL, Vanrooyen AA (1992) J Mater Sci 27:889–896

    Article  CAS  Google Scholar 

  3. Wang C, Liu CR (1999) Polymer 40:289–298

    Article  Google Scholar 

  4. Wang YM, Tong BB, Hou SJ, Li M, Shen CY (2011) Compos Part A 42:66–74

    Article  CAS  Google Scholar 

  5. Ninomiya N, Kato K, Fujimori A, Masuko T (2007) Polymer 48:4874–4882

    Article  CAS  Google Scholar 

  6. Assouline E, Pohl S, Fulchiron R, Gérard JF, Lustiger A, Wagner HD, Marom G (2000) Polymer 41:7843–7854

    Article  CAS  Google Scholar 

  7. Wang C, Liu FH, Huang WH (2011) Polymer 52:1326–1336

    Article  CAS  Google Scholar 

  8. Gray DG (2008) Cellulose 15:297–301

    Article  CAS  Google Scholar 

  9. Lacroix FV, Loos J, Schulte K (1999) Polymer 40:843–847

    Article  CAS  Google Scholar 

  10. Stern T, Teishev A, Marom G (1997) Compos Sci Technol 57:1009–1015

    Article  CAS  Google Scholar 

  11. Varga J, Karger-Kocsis J (1995) Polymer 36:4877–4881

    CAS  Google Scholar 

  12. Sun X, Li H, Zhang X, Wang J, Wang D, Yan S (2006) Macromolecules 39:1087–1092

    Article  CAS  Google Scholar 

  13. Sun XL, Li HH, Zhang XQ, Wang DJ, Schultz JM, Yan S (2010) Macromolecules 43:561–564

    Google Scholar 

  14. Loos J, Schimanski T, Hofman J, Peijs T, Lemstra PJ (2001) Polymer 42:3827–3834

    Article  CAS  Google Scholar 

  15. Li HH, Liu JC, Wang DJ, Yan SK (2003) Colloid Polym Sci 281:973–979

    Article  CAS  Google Scholar 

  16. Assouline E, Fulchiron R, Gerard JF, Wachtel E, Wagner HD, Marom G (1999) J Polym Sci, Part B: Polym Phys 37:2534–2538

    Article  CAS  Google Scholar 

  17. Assouline E, Wachtel E, Grigull S, Lustiger A, Wagner HD, Marom G (2002) Macromolecules 35:403–409

    Article  CAS  Google Scholar 

  18. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) J Phys Chem B106:5852–5858

    Google Scholar 

  19. Li B, Li LY, Wang BB, Li CY (2009) Nat Nanotechnol 4:358–362

    Article  CAS  Google Scholar 

  20. Ning NY, Luo F, Wang K, Zhang Q, Chen F, Du RN et al (2008) J Phys Chem B 112:14140–14148

    Article  CAS  Google Scholar 

  21. Ning NY, Luo F, Wang K, Du RN, Zhang Q, Chen F et al (2009) Polymer 50:3851–3856

    Article  CAS  Google Scholar 

  22. Liu MX, Jia ZX, Liu F, Jia DM, Guo BC (2010) J Colloid Interf Sci 350:186–193

    Article  CAS  Google Scholar 

  23. Zucchelli A, Focarete ML, Gualandi C, Ramakrishna S (2011) Polym Adv Technol 22:339–349

    Article  CAS  Google Scholar 

  24. Hoffman JD, Miller RL (1988) Macromolecules 21:3038–3051

    Article  CAS  Google Scholar 

  25. Yamada K, Watanabe K, Okada K, Toda A, Hikosaka M (2006) Polymer 47:7601–7606

    Article  CAS  Google Scholar 

  26. Han WJ, Zheng GQ, Liang YY, Dai K, Liu CT, Chen JB et al (2011) Colloid Polym Sci 289:843–848

    Article  CAS  Google Scholar 

  27. Liang YY, Zheng GQ, Han WJ, Liu CT, Chen JB, Li Q et al (2011) Mater Lett 65:653–656

    Article  CAS  Google Scholar 

  28. Liu XH, Wu QJ, Berglund LA (2002) Polymer 43:4967–4972

    Article  CAS  Google Scholar 

  29. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Macromol Chem Phys 75:134–158

    Article  CAS  Google Scholar 

  30. Bai HW, Wang Y, Zhang ZJ, Han L, Li YL, Zhou ZW et al (2009) Macromolecules 42:6647–6655

    Article  CAS  Google Scholar 

  31. Wang DL, Shao CG, Zhao BJ, Bai LG, Wang X, Yan TZ et al (2010) Macromolecules 43:2406–2412

    Article  CAS  Google Scholar 

  32. Hoffman JD (1986) Macromolecules 19:1124–1128

    Article  CAS  Google Scholar 

  33. Varga J (1992) J Mater Sci 27:2557–2579

    Article  CAS  Google Scholar 

  34. Clark EJ, Hoffman JD (1984) Macromolecules 17:878–885

    Article  CAS  Google Scholar 

  35. Wu DF, Yang T, Sun YR, Shi TJ, Zhou WD, Zhang M (2011) Polym Int 60:1497–1503

    Article  CAS  Google Scholar 

  36. Cheng SZD, Janimak JJ, Zhang AQ, Cheng HN (1990) Macromolecules 23:298–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our great thanks to the National Science Foundation of China (50803060, 51173171, 11172271 and 11172272) and the Innovative Talent Troops Construction Projects of Henan Province (114200510018) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqiang Zheng or Chuntai Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 10,539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Liu, S., Dai, K. et al. Transcrystallization in nanofiber bundle/isotactic polypropylene composites: effect of matrix molecular weight. Colloid Polym Sci 290, 1157–1164 (2012). https://doi.org/10.1007/s00396-012-2626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2626-x

Keywords

Navigation