Skip to main content
Log in

A comparison study on the homogeneity and heterogeneity fiber induced crystallization of isotactic polypropylene

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The crystallization behavior of iPP in composites with PET, Nylon-6 and its own fibers under various conditions was studied using an optical microscope equipped with a hot stage. The results show that the nucleation capacity of PET and Nylon-6 fibers towards the iPP matrix is mainly controlled by the shear flow of the iPP matrix during sample preparation. When the composites were prepared at a temperature where the iPP was kept in its supercooled state, the nucleation of iPP on the PET and Nylon-6 fiber surfaces was enhanced due to the shearing of the iPP melts caused by introduction of the fibers. The nucleation was markedly reduced by keeping the composites at the fiber introduction temperature for a short time to relax the shear flow of the iPP matrix. The nucleation of iPP on its own fiber, however, is mainly related to the nature of the iPP fiber itself. No detectable morphological change of iPP on its own fiber can be identified under all thermal conditions used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Clegg DW, Collyer AA (1986) Mechanical properties of reinforced thermoplastics. Elsevier, London

  2. Burton RH, Folkes MJ (1983) Plast Rubber Compos Process Appl 3:129

    CAS  Google Scholar 

  3. Wu ChM, Chen M, Karger-Kocsis J (1998) Polym Bull 41:239

    Article  CAS  Google Scholar 

  4. Billon N, Haudin JM (1994) J Them Anal 42: 679

    CAS  Google Scholar 

  5. Billon N, Haudin JM, Lefebvre D (1994) Colloid Polym Sci 272:633

    Google Scholar 

  6. Saujanya C, Radhakrishnan S (2001) Polymer 42:4537

    Article  CAS  Google Scholar 

  7. Peacock JH, File B, Nield E, Barlow CY (1996) In: Ishida H, Loening JL (eds) Composite interfaces. Elsevier, New York

  8. Lee Y, Porter RS (1986) Polym Eng Sci 26:1574

    Google Scholar 

  9. Thomason JL, Vanrooyen AA (1992) J Mater Sci 27:5

    Google Scholar 

  10. Huson LG, McGill WJ (1985) J Polym Sci Polym Phys Ed 23:121

    Article  CAS  Google Scholar 

  11. Heppenstall-Butler M, Bannister DJ Young RJ (1996) Composites Part A 27:833

    Article  Google Scholar 

  12. Devaux E, Cazé C (1999) Compos Sci Tech 59:459

    Article  CAS  Google Scholar 

  13. Thomason JL, Vanrooyen AA (1992) J Mater Sci 27:889

    Google Scholar 

  14. Thomason JL, Vanrooyen AA (1992) J Mater Sci 27:897

    CAS  Google Scholar 

  15. Cai YQ, Petermann J, Wittich H (1997) J Appl Polym Sci 65:67

    Google Scholar 

  16. Ciferri A, Ward I.M (1979) Ultra-high modulus polymers. Applied Science, London

  17. Blades H US Patents No. 3,767,757; 3,869,429; and 3,869,430 (to Du Pont).

  18. Smith P, Lemstra PJ (1980) J Mater Sci 15:505

    CAS  Google Scholar 

  19. Loos J, Schimanski T, Hofman J, Peijs T, Lemstra PJ (2001) Polymer 42:3827

    Article  CAS  Google Scholar 

  20. Teishev A, Incardona S, Migliaresi C, Marom G (1993) J Appl Polym Sci 50: 503

    Article  CAS  Google Scholar 

  21. Folkes MJ (1995) In: Karger-Kocsis J (ed) Polypropylene: structure, blends and composites, vol 1. Chapman and Hall, London, Chapter 3, pp 56–115

  22. Varga J(1992) J Mater Sci 27:2557

    CAS  Google Scholar 

  23. Varga J, Karger-Kocsis J (1996) J Polym Sci Part B: Polym Phys 34:657

    Google Scholar 

  24. Peterlin A (1975) In: Ward IM (ed) Structure and properties of oriented polymers. Applied Science, London, pp 46–48

  25. Wang C, Liu CR (1999) Polymer 40:289

    Article  Google Scholar 

  26. Wu ChM, Chen M, Karger-Kocsis (1999) Polymer 40: 4195

    Article  CAS  Google Scholar 

  27. Leugering HJ,Kirsch G (1973) Angew Makromol Chem 33:17

    Article  CAS  Google Scholar 

  28. Varga J (1983) Angew Makromol Chem 112:191

    Article  CAS  Google Scholar 

  29. Varga J, Karger-Kocsis J (1993) Polym Bull 30:105

    CAS  Google Scholar 

  30. Varga J, Karger-Kocsis J (1993) Compos Sci Technol 48:191

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support of the Natural Science Foundation of China (No.20244003) and the CAS hundred talents program are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouke Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Liu, J., Wang, D. et al. A comparison study on the homogeneity and heterogeneity fiber induced crystallization of isotactic polypropylene. Colloid Polym Sci 281, 973–979 (2003). https://doi.org/10.1007/s00396-003-0865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0865-6

Keywords

Navigation