Skip to main content
Log in

Synthesis and characterization of novel four-arm star PDMAEMA-stabilized colloidal silver nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Spontaneous formation and efficient stabilization of colloidal silver nanoparticles were achieved in aqueous four-arm star poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) solution at ambient temperature in the absence of any other reducing agent. In this reaction, four-arm star PDMAEMA acted as both reducing and stabilizing agents for silver nanoparticles. More importantly, four-arm star PDMAEMA is a tertiary-amine-containing star homopolymer, which shows that the scope of the reducing and stabilizing agents for metal nanoparticles can be extended from the general homopolymers and the block copolymers to the water-soluble simple tertiary-amine-containing star homopolymers. Fourier transform infrared, UV–vis absorption spectroscopy, and transmission electron microscopy were used to characterize the synthetic silver nanoparticles. A plausible mechanism for the formation of silver nanoparticles was proposed in the presence of linear and star PDMAEMA homopolymers. Moreover, the size of the resultant silver nanoparticles can be easily tuned by changing the concentrations of AgNO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, Thayer AM, Duncan TM, Douglass DC, Brus LE (1988) J Am Chem Soc 110:3046–3050

    Article  CAS  Google Scholar 

  2. Qiu LQ, Franc J, Rewari A, Blanc D, Saravanamuttu K (2009) J Mater Chem 19:373–378

    Article  CAS  Google Scholar 

  3. Dai J, Bruening ML (2002) Nano Lett 2:497–501

    Article  CAS  Google Scholar 

  4. Mulvaney P, Linnert T, Henglein A (1991) J Phys Chem 95:7843–7846

    Article  CAS  Google Scholar 

  5. Schmid G (1992) Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  6. Busbee BD, Obare SO, Murphy CJ (2003) Adv Mater 15:414–416

    Article  CAS  Google Scholar 

  7. Sun Y, Xia Y (2002) Science 298:2176–2179

    Article  CAS  Google Scholar 

  8. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901–1903

    Article  CAS  Google Scholar 

  9. Dadosh T (2009) Mater Lett 63:2236–2238

    Article  CAS  Google Scholar 

  10. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2001) Langmuir 17:574–577

    Article  CAS  Google Scholar 

  11. Nickel U, zu Castell A, Poeppl K, Schneider S (2000) Langmuir 16:9087–9091

    Article  CAS  Google Scholar 

  12. Sutton A, Franc G, Kakkar A (2009) J Polym Sci Polym Chem 47:4482–4493

    Article  CAS  Google Scholar 

  13. Shiraishi Y, Toshima N (1999) J Mol Catal A Chem 141:187–192

    Article  CAS  Google Scholar 

  14. Kapoor S (1998) Langmuir 14:1021–1025

    Article  CAS  Google Scholar 

  15. Yeung SA, Hobson R, Biggs S, Grieser F (1993) J Chem Soc Chem Commun 4:378–379

    Article  Google Scholar 

  16. Linnert T, Mulvaney P, Henglein A, Weller H (1990) J Am Chem Soc 112:4657–4664

    Article  CAS  Google Scholar 

  17. Toshima N, Yonezawa T, Kushihashi K (1993) J Chem Soc Faraday Trans 89:2537–2543

    Article  CAS  Google Scholar 

  18. Liz-Marzan LM, Lado-Tourino I (1996) Langmuir 12:3585–3589

    Article  CAS  Google Scholar 

  19. Courrol LC, Oliveira Silva FR, Gomes L (2007) Colloid Surf A 305:54–57

    Article  CAS  Google Scholar 

  20. Ducamp-Sanguesa C, Herrera-Urbina R, Figlarz M (1992) J Solid State Chem 100:272–280

    Article  CAS  Google Scholar 

  21. Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  22. Hussain I, Brust M, Papworth AJ, Cooper AI (2003) Langmuir 19:4831–4835

    Article  CAS  Google Scholar 

  23. Wang L, Chen D (2006) Colloid Polym Sci 284:449–454

    Article  CAS  Google Scholar 

  24. Grubbs RB (2005) J Polym Sci Polym Chem 43:4323–4336

    Article  CAS  Google Scholar 

  25. Joo Hwan K, Sang Wook K, Jung Tae P, Jin Ah S, Jong Hak K, Yong Soo K (2009) J Membr Sci 339:49–56

    Article  Google Scholar 

  26. Heise A, Trollsaas M, Magbitang T, Hedrick JL, Frank CW, Miller RD (2001) Macromolecules 34:2798–2804

    Article  CAS  Google Scholar 

  27. Plamper FA, Schmalz A, Penott-Chang E, Drechsler M, Jusufi A, Ballauff M, Muller AHE (2007) Macromolecules 40:5689–5697

    Article  CAS  Google Scholar 

  28. Inoue K (2000) Prog Polym Sci 25:453–571

    Article  CAS  Google Scholar 

  29. Deng G, Chen Y (2004) Macromolecules 37:18–261

    Article  CAS  Google Scholar 

  30. Wang X-Z, Zhang H-L, Shi D-C, Chen J-F, Wang X-Y, Zhou Q-F (2005) Eur Polym J 41:933–940

    Article  CAS  Google Scholar 

  31. Jankova K, Kops J, Chen X, Batsberg W (1999) Macromol Rapid Commun 20:219–223

    Article  CAS  Google Scholar 

  32. Zhao Y, Shuai X, Chen C, Xi F (2004) Macromolecules 37:8854–8862

    Article  CAS  Google Scholar 

  33. Yu X, Tang X, Pan C (2005) Polymer 46:11149–11156

    Article  CAS  Google Scholar 

  34. Petit C, Lixon P, Pileni MP (1993) J Phys Chem 97:12974–12983

    Article  CAS  Google Scholar 

  35. Kuo P-L, Chen W-F (2003) J Phys Chem B 107:11267–11272

    Article  CAS  Google Scholar 

  36. Sakai T, Alexandridis P (2005) J Phys Chem B 109:7766–7777

    Article  CAS  Google Scholar 

  37. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green Chem 9:852–858

    Article  CAS  Google Scholar 

  38. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Langmuir 14:17–30

    Article  CAS  Google Scholar 

  39. Link S, El-Sayed MA (1999) J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  40. Shipway AN, Katz E, Willner I (2000) Chem Phys Chem 1:18–52

    CAS  Google Scholar 

  41. Mie G (1908) Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  42. Wang D-S, Kerker M, Chew HW (1980) Appl Opt 19:2315–2328

    Article  CAS  Google Scholar 

  43. Heard SM, Grieser F, Barraclough CG, Sanders JV (1983) J Colloid Interface Sci 93:545–555

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the support of the National Natural Science Foundation of China (20771071), the Program for New Century Excellent Talents in University of China (NCET-07-0528), and the Fundamental Research Funds for the Central Universities (GK200902001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwei Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Gao, Z., Yang, L. et al. Synthesis and characterization of novel four-arm star PDMAEMA-stabilized colloidal silver nanoparticles. Colloid Polym Sci 288, 1713–1722 (2010). https://doi.org/10.1007/s00396-010-2290-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2290-y

Keywords

Navigation