Skip to main content
Log in

Catechol End-Functionalized Polysarcosine for Insitu Synthesis and Stabilization of Silver Nanoparticles

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Functional polymers were previously employed to minimize the susceptibility of metallic nanoparticles (MNPs) for aggregation. Herein, we intended to conjugate catechol moiety into the polymer chain end considering its anchoring ability to virtually most surfaces. Accordingly, catechol end-functionalized polysarcosine (cat-PSar) was successfully prepared from the ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCA) using dopamine hydrochloride initiator. ROP of Sar-NCA was carried out at different monomer to initiator feed ratios. The molecular structure of cat-PSar was confirmed by 1H NMR and MALDITOF. Afterward, the obtained catechol functionalized polymer was used for in-situ synthesis and stabilization of silver nanoparticles (Ag-NPs) in aqueous solution. The observed characteristic absorption peak at λmax of 415 nm indicates the formation of Ag-NPs. Scanning electron microscope (SEM) images also elucidate the formation of Ag-NPs with the relatively small sizes of the nanocomposite at a high concentration of silver nitrate Hence, biomimetic polymers could play a dual role as reducing and stabilizing agents in the preparation of monodispersed MNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hoertz, A. Birke, L. Kaps, S. Decker, E. Waechtersbach, K. Fischer, D. Schuppan, M. Barz, M. Schmidt, Macromolecules 48, 2074–2086 (2015).

    Article  CAS  Google Scholar 

  2. A. Duro-Castano, R. M. England, D. Razola, E. Romero, M. Oteo-Vives, M. A. Morcillo, Vicent, M. J., Mol. Pharmaceutics 12, 3639–3649 (2015).

    Article  CAS  Google Scholar 

  3. D. Lu, H. Wang, T. E. Li, Y. Li, F. Dou, S. Sun, H. Guo, Liao, S.; Yang Z.; Wei, Q.; Lei, Z., ACS Appl. Mater. Interfaces 9, 16757–16767 (2017).

    Google Scholar 

  4. Zhang H.; Chen, J.; Zhang X.; Xiao, C; Chen, X.; Tao, Y.; Wang, X., Biomacromolecules 18, 924–930 (2017).

    Article  CAS  Google Scholar 

  5. N. Gangloff, C. Fetsch, R. Luxenhofer, Macromol. Rapid Commun. 34, 997–1001 (2013).

    Article  CAS  Google Scholar 

  6. N. Gangloff, J. Ulbricht, T. Lorson, H. Schlaad, R. Luxenhofer, Chem. Rev. 116, 1753–1802 (2016).

    Article  CAS  Google Scholar 

  7. S. A. Fowler, H. E. Blackwell, Org. Biomol. Chem. 7, 1508–1524 (2009).

    Article  CAS  Google Scholar 

  8. C. Secker, S. M. Brosnan, R. Luxenhofer, H. Schlaad, Biosci. 15 881–891 (2015).

    CAS  Google Scholar 

  9. D. Zhang, S. H. Lahasky, L. Guo, C.U. Lee, M. Lavan, Macromolecules 45, 5833–5841 (2012).

    Article  CAS  Google Scholar 

  10. K. H. A. Lau, Biomater. Sci. 2, 627–633 (2014).

    Article  CAS  Google Scholar 

  11. Luxenhofer, R.; Fetsch, C; Grossmann, A., J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2731–2752.

    Article  CAS  Google Scholar 

  12. I. Dimitrov, H. Schlaad, Chem. Commun. 2, 2944–2945 (2003).

    Article  Google Scholar 

  13. N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou, Chem. Rev. 109, 5528–5578 (2009).

    Article  CAS  Google Scholar 

  14. A. Makino, R. Yamahara, E. Ozeki, S. Kimura, Chem. Lett. 36, 1220–1221 (2007).

    Article  CAS  Google Scholar 

  15. A. Grossmann, R. Luxenhofer, Macromol. Rapid Commun. 33, 1714–1719 (2012).

    Article  CAS  Google Scholar 

  16. S. Cui, X. Pan, H. Gebru, X. Wang, J. Liu, J. Liu, Z. Li, K. Guo, J. Mater. Chem. B 5, 679–690 (2017).

    Article  CAS  Google Scholar 

  17. X. W. Fan, L. J. Lin, J. L. Dalsin, P. B. Messersmith, J. Am. Chem. Soc. 127, 15843–15847 (2005).

    Article  CAS  Google Scholar 

  18. J. L. Dalsin, B. H. Hu, B. P. Lee, P. B. Messersmith, J. Am. Chem. Soc. 125, 4253–4258 (2003).

    Article  CAS  Google Scholar 

  19. J. L. Dalsin, L. J. Lin, S. Tosatti, J. Voros, M.Textor, P. B. Messersmith, Langmuir 21, 640–646 (2005).

    Article  CAS  Google Scholar 

  20. M. Barz, R. Luxenhofer, R. Zentel, M. J. Vicent, Polym. Chem. 2, 1900–1918 (2011).

    Article  CAS  Google Scholar 

  21. M. Khuphe, A. Kazlauciunas, M. Huscroft, P. D. Thornton, Chem. Commun. 51, 1520–1523 (2015).

    Article  CAS  Google Scholar 

  22. C. Fetsch, A. Grossmann, L. Holz, J. F. R. Nawroth, Luxenhofer, Macromolecules 44, 6746–6758 (2011).

    Article  CAS  Google Scholar 

  23. J. F. Lutz, D. Schutt, S. Kubowicz, Macromol. Rapid Commun. 26, 23–28 (2005).

    Article  CAS  Google Scholar 

  24. C. D. Vacogne, H. Schlaad, Chem. Commun. 51, 15645–15648 (2015).

    Article  CAS  Google Scholar 

  25. J. Zou, J. Fan, X. He, S. Zhang, H. Wang, K. L. Wooley, Macromolecules 46, 4223–4226 (2013).

    Article  CAS  Google Scholar 

  26. K. C. L. Black, Z. Liu, P. B. Messersmith, Chem. Mater. 23, 1130–1135 (2011).

    Article  CAS  Google Scholar 

  27. D. E. Fullenkamp, D. G. Barrett, D. R. Miller, J. W. Kurutz, P. B. Messersmith, RSC Adv. 4, 25127–25134 (2014).

    Article  CAS  Google Scholar 

  28. G. Marcelo, M. L. Gonzalez, F. Mendicuti, M. P. Tarazona, M. Valiente, Macromolecules 47, 6028–6036 (2014).

    Article  CAS  Google Scholar 

  29. A. Neves, L. M. Rossi, A. J. Bortoluzzi, B. Szpoganicz, C. Wiezbicki, E.Schwingel, Inorg. Chem. 41, 1788–1794 (2002).

    Article  CAS  Google Scholar 

  30. Y. Cheng, L. Yin, S. Lin, M. Wiesner, E. Bernhardt, J. Liu, J. Phys. Chem. C 115, 4425–4432 (2011).

    Article  CAS  Google Scholar 

  31. Y.Y. Yuan, X.Q. Liu, Y.C. Wang, J. Wang, Langmuir 25, 10298–10304 (2009).

    Article  CAS  Google Scholar 

  32. P. Kannan, S. A. John, Nanotechnol. 19, 8 (2008).

    Article  CAS  Google Scholar 

  33. Z. Wang B. Tan, I. Hussain, N. Schaeffer, M. F. Wyatt, M. Brust, A. I. Cooper, Langmuir 23, 885–895 (2007).

    Article  CAS  Google Scholar 

  34. S. K. Bajpai, Y. M. Mohan, M. Bajpai, R. Tankhiwale, V. Thomas, J. Nanosci. Nanotechnol. 7, 2994–3010 (2007).

    Article  CAS  Google Scholar 

  35. P. M. Tiwari, K. Vig, V. A. Dennis, S. R. Singh, Nanomaterials 1, 31–63 (2011).

    Article  CAS  Google Scholar 

  36. S. S. Soni, R. L. Vekariya, V. K. Aswal, RSC Adv. 3, 8398–8406 (2013).

    Article  CAS  Google Scholar 

  37. R. Bleach, B. Karagoz, S. M. Prakash, T. P. Davis, C. Boyer, ACS Macro Lett. 3, 591–596 (2014).

    Article  CAS  Google Scholar 

  38. G. Marcelo, M. Fernandez-Garcia, RSC Adv. 4, 11740–11749 (2014).

    Article  CAS  Google Scholar 

  39. A. Arakaki, K. Shimizu, M. Oda, T. Sakamoto, T. Nishimura, T. Kato, Org. Biomol. Chem. 13, 974–989 (2015).

    Article  CAS  Google Scholar 

  40. N. Zhu, W. Feng Z. Zhang, Z. Fang Z. Li, K. Guo, Polymer 80, 88–94 (2015).

    Article  CAS  Google Scholar 

  41. Z. Nate, M. J. Moloto, P. K. Mubiayi, P. N. Sibiya, MRS Adv. 3, 2505–2517 (2018).

    Article  CAS  Google Scholar 

  42. M. Sarkarat, A. B. Meddeb, S. Komarneni, Z Ounaies, MRS Adv. 4, 2103–2108 (2019).

    Article  CAS  Google Scholar 

  43. X. F. Zhang, Z. G. Liu, W. Shen and S. Gurunathan, Int. ]. Mol. Sci. 17, 1534 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailemariam Gebru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebru, H., Li, Z. Catechol End-Functionalized Polysarcosine for Insitu Synthesis and Stabilization of Silver Nanoparticles. MRS Advances 5, 1113–1120 (2020). https://doi.org/10.1557/adv.2020.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.141

Navigation