Skip to main content
Log in

Control of micellization induced by disproportionation of 2,2,6,6-tetramethylpiperidine-1-oxyl supported on side chains of a block copolymer

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The block copolymer micellization induced by the disproportionation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was performed using acids with different acid strengths. A poly(4-vinylbenzyloxy-TEMPO)-block-polystyrene diblock copolymer (PVTEMPO-b-PSt) produced micelles in 1,4-dioxane by the disproportionation of the TEMPO by HNO3, HCl, HClO4, and HSbF6. The acid strength affected the efficiency of the micellization. The acid/VTEMPO molar ratio required for the micellization decreased with an increase in the acid strength: \( {\text{HNO}}_{\text{3}} < {\text{HCl}} < {\text{HClO}}_{\text{4}} < {\text{HSbF}}_{\text{6}} \). The acid strength also made a difference in the hydrodyamic diameter of the micelles. The stronger acid provided larger micelles. This difference in the micellization was based on the difference in the solubility of the oxoaminium salt formed by the disproportionation of the TEMPO and on the steric hindrance of its counter anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Neradovic D, Nostrum CF, Hennink WE (2001) Macromolecules 34:7589

    Article  CAS  Google Scholar 

  2. Arotcarena M, Heise B, Ishaya S, Laschewsky A (2002) J Am Chem Soc 124:3787

    Article  CAS  Google Scholar 

  3. Yin HQ, Zhou ZK, Huang JB, Zheng R, Zhang YY (2003) Angew Chem Int Ed 42:2188

    Article  CAS  Google Scholar 

  4. Majhi PR, Blume A (2001) Langmuir 17:3844

    Article  CAS  Google Scholar 

  5. Yoshida E, Ohta M, Terada K (2005) Polym Adv Technol 16:183

    Article  CAS  Google Scholar 

  6. Yoshida E, Tanaka M, Takata T (2005) Colloid Polym Sci 283:1100

    Article  CAS  Google Scholar 

  7. Mc Clain JB, Canelas DA, Samulski ET, DeSimone JM, Londono JD, Cochran HD, Wignall GD, Chillura-Martino GD, Triolo R (1996) Science 274:2049

    Article  CAS  Google Scholar 

  8. Zhou S, Chu B (1998) Macromolecules 31:5300

    Article  CAS  Google Scholar 

  9. Celso L, Triolo A, Triolo F, Donato DI, Steinhart M, Kriechbaum M, Amenitsch H, Triolo R (2002) Eur Phys J Soft Matter 8:311

    Article  Google Scholar 

  10. Hu Y, Kramer MC, Boudreaux CJ, Mc Cormick CL (1995) Macromolecules 28:7100

    Article  CAS  Google Scholar 

  11. Lee AS, Butun V, Vamvakaki M, Armes S, Pople JA, Gast AP (2002) Macromolecules 35:8540

    Article  CAS  Google Scholar 

  12. Chen WJ, Li GZ, Zhou GW, Zhai LM, Li ZM (2003) Chem Phys Lett 374:482

    Article  CAS  Google Scholar 

  13. Bergsma M, Fielden ML, Engberts JBFN (2001) J Colloid Interface Sci 243:491

    Article  CAS  Google Scholar 

  14. Tsuchiya K, Sakai H, Saji T, Abe M (2003) Langmuir 19:9343

    Article  CAS  Google Scholar 

  15. Aydogan N, Abbott NL (2001) Langmuir 17:5703

    Article  CAS  Google Scholar 

  16. Leclair S, Mathew L, Giguere M, Motallebi S, Zhao Y (2003) Macromolecules 36:9024

    Article  CAS  Google Scholar 

  17. Eastoe J, Dominguez MS, Wyatt P, Beeby A, Heenan R (2002) Langmuir 18:7837

    Article  CAS  Google Scholar 

  18. Szczubialka K, Nowakoaska M (2003) Polymer 44:5269

    Article  CAS  Google Scholar 

  19. Yoshida E, Kuwayama S (2007) Colloid Polym Sci 285:1287

    Article  CAS  Google Scholar 

  20. Yoshida E, Kuwayama S (2008) Colloid Polym Sci 286:1621

    Article  CAS  Google Scholar 

  21. Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1994) J Chem Soc Chem Commun 2245

  22. Haubs M, Ringsdorf H (1987) New J Chem 11:151

    CAS  Google Scholar 

  23. Veronese A, Berclaz N, Luisi PL (1998) J Phys Chem B 102:7078

    Article  CAS  Google Scholar 

  24. Yoshida E, Kuwayama S (2009) Colloid Polym Sci 287:789

    Article  CAS  Google Scholar 

  25. Yoshida E, Tanaka T (2006) Colloid Polym Sci 285:135

    Article  CAS  Google Scholar 

  26. Yoshida E, Tanaka T (2008) Colloid Polym Sci 286:827

    Article  CAS  Google Scholar 

  27. Liu YC, Wu LM, Chen P (1985) Tetrahedron Lett 26:4201

    Article  CAS  Google Scholar 

  28. Paper I, Bobbitt JM, Cecile M, Flores L (1988) Heterocycles 27:509

    Article  Google Scholar 

  29. Yoshida E, Ogawa H (2007) J Oleo Sci 56:297

    CAS  Google Scholar 

  30. Yoshida E, Nakamura K, Takata T, Endo T (1993) J Polym Sci Part A Polym Chem 31:1505

    Article  CAS  Google Scholar 

  31. Buhler E, Dobrynin AV, DeSimone JM, Rubinstein M (1998) Macromolecules 31:7347

    Article  CAS  Google Scholar 

  32. Yoshida E, Wells SL, DeSimone JM (2001) Kobunshironbunshu 58:507

    CAS  Google Scholar 

  33. Yoshida E, Kunugi S (2002) Macromolecules 35:6665

    Article  CAS  Google Scholar 

  34. Brown W (1996) Light scattering principles and development. Clarendon Press, Oxford

    Google Scholar 

  35. Brouwer DM, van Doorn JA (1972) Rec Trav Chim 91:895

    CAS  Google Scholar 

  36. March J (1985) Advanced organic chemistry 3rd Edn., Wiley-Interscience pp 220

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, E. Control of micellization induced by disproportionation of 2,2,6,6-tetramethylpiperidine-1-oxyl supported on side chains of a block copolymer. Colloid Polym Sci 287, 1365–1368 (2009). https://doi.org/10.1007/s00396-009-2111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2111-3

Keywords

Navigation