Skip to main content
Log in

Poly(l-lactide) networks with tailored water sorption

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A poly(l-lactide) diol was obtained through ring opening polymerization of l-lactide, using 1,6 hexanediol and tin(II) 2 ethylhexanoate as a catalyst. In the second step, the poly(l-lactide) macromer (mLA) was obtained by the reaction of poly(l-lactide) diol with methacrylic anhydride. The effective incorporation of the polymerizable end groups was assessed by Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR). Besides, poly(l-lactide) networks (pmLA) were prepared by photopolymerization of mLA. Further, the macromer was copolymerized with 2-hydroxyethyl acrylate seeking to tailor the hydrophilicity of the system. A set of hydrophilic copolymer networks were obtained. The phase microstructure of the new system and the network architecture was investigated by differential scanning calorimetry, infrared spectroscopy, dynamic mechanical spectroscopy, thermogravimetry, and water sorption studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Langer R, Vacanti JP (1993) Science 260:920

    Article  CAS  Google Scholar 

  2. Peppas NA, Langer R (2004) Aiche J 50:536

    Article  CAS  Google Scholar 

  3. Jagur-Grodzinski J (2006) Polym Adv Technol 17:395

    Article  CAS  Google Scholar 

  4. Lavik E, Langer R (2004) Appl Microbiol Biotechnol 65:1

    Article  CAS  Google Scholar 

  5. Cao Y, Carol TI (2005) Aust J Chem 58:691

    Article  CAS  Google Scholar 

  6. Wang YK, Yong T, Ramakrishna S (2005) Aust J Chem 58:704

    Article  CAS  Google Scholar 

  7. Grijpma DW, Pennings AJ (1994) Macromol Chem Phys 195:1633

    Article  CAS  Google Scholar 

  8. Holland SJ, Tighe B, Gould PLJ (1986) J Control Release 4:155

    Article  CAS  Google Scholar 

  9. Vert M, Li SM, Spenlehaur G, Guerin P (1992) J Mater Sci Mater Med 3:432

    Article  CAS  Google Scholar 

  10. Vert M, Schwarch G, Coudane J (1995) J Macromol Sci Pure Appl Chem A32:787

    CAS  Google Scholar 

  11. Kharas GB, Kamenetsky M, Simantirakis J, Beinlich KC, Rizzo AMT, Caywood GA, Watson K (1997) J Appl Polym Sci 66:1123

    Article  CAS  Google Scholar 

  12. Peter SJ, Kim P, Yasko AW, Yaszemski MJ, Mikos AG (1999) J Biomed Mater Res 44:314

    Article  CAS  Google Scholar 

  13. Domb AJ, Manor N, Elmalak O (1996) Biomaterials 17:411

    Article  CAS  Google Scholar 

  14. Kim BS, Hrkach JS, Langer R (2000) J Polym Sci Part A: Polym Chem 38:1277

    Article  CAS  Google Scholar 

  15. Burdick JA, Mason MN, Anseth KS (2001) J Biomater Sci Polym Ed 12:1253

    Article  CAS  Google Scholar 

  16. Burdick JA, Padera RF, Huang JV, Anseth KS (2002) J Biomed Mater Res 63:484

    Article  CAS  Google Scholar 

  17. Horbett TA, Schway MB, Ratner BD (1985) J Colloid Interface Sci 104:28

    Article  CAS  Google Scholar 

  18. Horbett TA, Schway MB (1988) J Biomed Mater Res 22:763

    Article  CAS  Google Scholar 

  19. Chinn JA, Horbett TA, Ratner BD, Schway MB (1989) J Colloid Interface Sci 127:67

    Article  CAS  Google Scholar 

  20. Ertel SI, Ratner BD, Horbett TA (1990) J Biomed Mater Res 24:1637

    Article  CAS  Google Scholar 

  21. Muller M, Oehr C (1999) Surf Coatings Technol 116:802

    Article  Google Scholar 

  22. Klee D, Villari RV, Hocker H, Dekker B, Mittermayer C (1995) J Mater Sci Mater Med 5:592

    Article  Google Scholar 

  23. Fang YE, Lu XB, Wang SZ, Zhao X, Fang F (1996) J Appl Polym Sci 62:2209

    Article  CAS  Google Scholar 

  24. Ajayaghosh A, Das S (1992) J Appl Polym Sci 45:1617

    Article  CAS  Google Scholar 

  25. Geuskens G, Etoc A, Michele PD (2000) Eur Polym J 36:265

    Article  CAS  Google Scholar 

  26. Kang IK, Kwon BK, Lee JH, Lee HB (1993) Biomaterials 14:787

    Article  CAS  Google Scholar 

  27. Lee JS, Kaibara M, Iwaki M, Sasabe H, Suzuki Y, Kusakabe M (1993) Biomaterials 14:958

    Article  CAS  Google Scholar 

  28. Sato H, Tsuji H, Ikeda S, Ikemoto N, Ishikawa J, Nishimoto S (1999) J Biomed Mater Res 44:22

    Article  CAS  Google Scholar 

  29. Park TG, Cohen S, Langer R (1992) Macromolecules 25:116

    Article  CAS  Google Scholar 

  30. Barakat I, Dubois PH, Grandfils CH, Jérôme R (1999) J Polym Sci Part A: Polym Chem 37:2401

    Article  CAS  Google Scholar 

  31. Grijpma DW, Pennings AJ (1991) Polym Bull 25:335

    Article  CAS  Google Scholar 

  32. Grijpma DW, Zondervan GJ, Pennings AJ (1991) Polym Bull 25:327

    Article  CAS  Google Scholar 

  33. Albertsson AC, Gruvegard M (1995) Polymer 36:1009

    Article  CAS  Google Scholar 

  34. Jamshidi K, Hoyn SH, Ikada Y (1988) Polymer 29:2229

    Article  CAS  Google Scholar 

  35. Hoyn SH, Jamshidi K, Ikada Y (1997) Biomaterials 18:1503

    Article  Google Scholar 

  36. Escobar Ivirico JL, Salmerón Sánchez M, Sabater i Serra R, Meseguer Dueñas JM, Gómez Ribelles JL, Monleón Pradas M (2006) Macromol Chem Phys 207:2195

    Article  Google Scholar 

  37. Escobar Ivirico JL, Costa Martínez E, Salmerón Sánchez M, Criado Muñoz I, Gómez Ribelles JL, Monleón Pradas M (2007) J Biomed Mater Res. Part B Appl Biomat 83B:266

    Article  Google Scholar 

  38. Tutusaus O, Delfosse S, Simal F, Demonceau A, Noels AF, Núñez R, Viñas C, Teixidor F (2002) Inorg Chem Commun 5:941

    Article  CAS  Google Scholar 

  39. Kanaoka S, Sawamoto M, Higashimura T (1991) Macromolecules 24:2309

    Article  CAS  Google Scholar 

  40. Salmerón Sánchez M, Gómez Ribelles JL, Hernández Sánchez F, Mano JF (2005) Thermochim Acta 430:201

    Article  Google Scholar 

  41. López-Rodríguez N, López-Arraiza A, Meaurio E, Sarasua JR (2006) Polym Eng Sci 9:1299

    Article  Google Scholar 

  42. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  43. Arima Y, Iwata H (2007) Biomaterials 28:3074

    Article  CAS  Google Scholar 

  44. Marchin KL, Berrie CL (2003) Langmuir 19:9883

    Article  CAS  Google Scholar 

  45. Pelham JR, Wang YL (1997) Proc Natl Acad Sci U S A 94:13661

    Article  CAS  Google Scholar 

  46. Gray DS, Tien J, Chen CS (2003) J Biomed Mater Res 66A:605

    Article  CAS  Google Scholar 

  47. Genes NG, Rowley JA, Mooney DJ, Bonassar LJ (2004) Arch Biochem Biophys 422:161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of the Spanish Ministry of Science through project No. MAT2006-08120 (including the FEDER financial support) is kindly acknowledged. JLEI acknowledges Generalitat Valenciana for the support through the predoctoral grant CTBPRB/2005/075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Luis Escobar Ivirico.

Appendix

Appendix

Short text for the table of contents

A new set of copolymer networks based on poly(l-lactide) macromer p(mLA) was synthesized, whose water sorption behavior can be modulated by copolymerization with a hydrophilic monomer. The new block copolymer network is able to tailor the water sorption capacity, keeping the p(mLA) properties. The figure shows the ideal structure for the hydrophilized p(l-lactide) networks.

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobar Ivirico, J.L., Salmerón-Sánchez, M., Gómez Ribelles, J.L. et al. Poly(l-lactide) networks with tailored water sorption. Colloid Polym Sci 287, 671–681 (2009). https://doi.org/10.1007/s00396-009-2026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2026-z

Keywords

Navigation