Skip to main content
Log in

Poly(N-isopropylacrylamide)-block-poly(acrylic acid) hydrogels: synthesis and rapid thermoresponsive properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this contribution, we reported the synthesis of poly(N-isopropylacrylamide)-block-poly(acrylic acid) (PNIPAAm-b-PAA) copolymer networks via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization. The PNIPAAm-b-PAA block copolymer networks were characterized by means of Fourier transform infrared spectroscopy (FTIR) and small angle X-ray scattering (SAXS). The volume phase transition (VPT) temperatures of the PNIPAAm-b-PAA hydrogels were measured by means of micro-differential scanning calorimetry (micro-DSC). It was found that the block copolymer hydrogels displayed the VPT temperatures lower than the control PNIPAAm hydrogel. Compared to the control PNIPAAm hydrogel, the deswelling and reswelling properties of the block copolymer hydrogels were significantly improved. The improved thermoresponsive properties of the PNIPAAm-b-PAA hydrogels have been interpreted on the basis of the formation of the architecture of the block copolymer networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lutz J-F, Akdemir Ö, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly (NIPAM) over? J Am Chem Soc 128:13046–13047

    Article  CAS  Google Scholar 

  2. Lutz J-F, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate. Macromolecules 39:893–896

    Article  CAS  Google Scholar 

  3. Hoffman A, Stayton P, El-Sayed M, Murthy N, Bulmus V, Lackey C, Cheung C (2007) Design of “smart” nano-scale delivery systems for biomolecular therapeutics. J Biomed Nanotechnol 3:213–217

    Article  CAS  Google Scholar 

  4. Lee Y, Fukushima S, Bae Y, Hiki S, Ishii T, Kataoka K (2007) A protein nanocarrier from charge-conversion polymer in response to endosomal pH. J Am Chem Soc 129:5362–5363

    Article  CAS  Google Scholar 

  5. Matsuda N, Shimizu T, Yamato M, Okano T (2007) Tissue engineering based on cell sheet technology. Adv Mater 19:3089–3099

    Article  CAS  Google Scholar 

  6. Magnusson JP, Khan A, Pasparakis G, Saeed AO, Wang W, Alexander C (2008) Ion-sensitive “isothermal” responsive polymers prepared in water. J Am Chem Soc 130:10852–10853

    Article  CAS  Google Scholar 

  7. Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton PS (2002) Photoresponsive polymer–enzyme switches. Proc Natl Acad Sci 99:16592–16596

    Article  CAS  Google Scholar 

  8. Jonas AM, Glinel K, Oren R, Nysten B, Huck WT (2007) Thermo-responsive polymer brushes with tunable collapse temperatures in the physiological range. Macromolecules 40:4403–4405

    Article  CAS  Google Scholar 

  9. Oh JK, Siegwart DJ, H-i L, Sherwood G, Peteanu L, Hollinger JO, Kataoka K, Matyjaszewski K (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129:5939–5945

    Article  CAS  Google Scholar 

  10. Kikuchi A, Okano T (2002) Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 27:1165–1193

    Article  CAS  Google Scholar 

  11. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  12. Gutowska A, Bae YH, Feijen J, Kim SW (1992) Heparin release from thermosensitive hydrogels. J Control Release 22:95–104

    Article  CAS  Google Scholar 

  13. Stenzel MH, Davis TP (2002) Star polymer synthesis using trithiocarbonate functional β–cyclodextrin cores (reversible addition–fragmentation chain–transfer polymerization). J Polym Sci A Polym Chem 40:4498–4512

    Article  CAS  Google Scholar 

  14. Wu XS, Hoffman AS, Yager P (1992) Synthesis and characterization of thermally reversible macroporous poly (N–isopropylacrylamide) hydrogels. J Polym Sci A Polym Chem 30:2121–2129

    Article  CAS  Google Scholar 

  15. Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly (N-isopropylacrylamide)-based microgels. Macromolecules 40:670–678

    Article  CAS  Google Scholar 

  16. Zhang X-Z, Xu X-D, Cheng S-X, Zhuo R-X (2008) Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 4:385–391

    Article  CAS  Google Scholar 

  17. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242

    Article  CAS  Google Scholar 

  18. Wu C, Zhou S (1997) Volume phase transition of swollen gels: discontinuous or continuous? Macromolecules 30:574–576

    Article  CAS  Google Scholar 

  19. Heskins M, Guillet JE (1968) Solution properties of poly (N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455

    Article  CAS  Google Scholar 

  20. Kujawa P, Tanaka F, Winnik FM (2006) Temperature-dependent properties of telechelic hydrophobically modified poly (N-isopropylacrylamides) in water: evidence from light scattering and fluorescence spectroscopy for the formation of stable mesoglobules at elevated temperatures. Macromolecules 39:3048–3055

    Article  CAS  Google Scholar 

  21. Yin X, Hoffman AS, Stayton PS (2006) Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7:1381–1385

    Article  CAS  Google Scholar 

  22. Ta A, Kaneko T, Matsusaki M, Akashi M (2006) Rapid and precise release from nano–tracted poly (N–isopropylacrylamide) hydrogels containing linear poly (acrylic acid). Macromol Biosci 6:959–965

    Article  Google Scholar 

  23. Zhu PW, Napper DH (1994) Experimental observation of coil-to-globule type transitions at interfaces. J Colloid Interface Sci 164:489–494

    Article  CAS  Google Scholar 

  24. Shan J, Chen J, Nuopponen M, Tenhu H (2004) Two phase transitions of poly (N-isopropylacrylamide) brushes bound to gold nanoparticles. Langmuir 20:4671–4676

    Article  CAS  Google Scholar 

  25. Zhuo RX, Li W (2003) Preparation and characterization of macroporous poly (N–isopropylacrylamide) hydrogels for the controlled release of proteins. J Polym Sci A Polym Chem 41:152–159

    Article  CAS  Google Scholar 

  26. Kato N, Sakai Y, Shibata S (2003) Wide-range control of deswelling time for thermosensitive poly (N-isopropylacrylamide) gel treated by freeze-drying. Macromolecules 36:961–963

    Article  CAS  Google Scholar 

  27. Zhang X-Z, Yang Y-Y, Chung T-S, Ma K-X (2001) Preparation and characterization of fast response macroporous poly (N-isopropylacrylamide) hydrogels. Langmuir 17:6094–6099

    Article  CAS  Google Scholar 

  28. Serizawa T, Wakita K, Akashi M (2002) Rapid deswelling of porous poly (N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules 35:10–12

    Article  CAS  Google Scholar 

  29. Annaka M, Matsuura T, Kasai M, Nakahira T, Hara Y, Okano T (2003) Preparation of comb-type N-isopropylacrylamide hydrogel beads and their application for size-selective separation media. Biomacromolecules 4:395–403

    Article  CAS  Google Scholar 

  30. Guiseppi-Elie A, Sheppard NF, Brahim S, Narinesingh D (2001) Enzyme microgels in packed–bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays. Biotechnol Bioeng 75:475–484

    Article  CAS  Google Scholar 

  31. Cong H, Li L, Zheng S (2013) Poly (N-isopropylacrylamide)-block-poly (vinyl pyrrolidone) block copolymer networks: synthesis and rapid thermoresponse of hydrogels. Polymer 54:1370–1380

    Article  CAS  Google Scholar 

  32. Nykänen A, Nuopponen M, Laukkanen A, Hirvonen S-P, Rytelä M, Turunen O, Tenhu H, Mezzenga R, Ikkala O, Ruokolainen J (2007) Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene. Macromolecules 40:5827–5834

    Article  Google Scholar 

  33. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T (1998) Rapid deswelling response of poly (N-isopropylacrylamide) hydrogels by the formation of water release channels using poly (ethylene oxide) graft chains. Macromolecules 31:6099–6105

    Article  CAS  Google Scholar 

  34. Hayashi H, Kono K, Takagishi T (1998) Temperature-dependent associating property of liposomes modified with a thermosensitive polymer. Bioconjug Chem 9:382–389

    Article  CAS  Google Scholar 

  35. Song J, Yu R, Wang L, Zheng S, Li X (2011) Poly (N-vinylpyrrolidone)-grafted poly(N-isopropylacrylamide) copolymers: synthesis, characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer 52:2340–2350

    Article  CAS  Google Scholar 

  36. Zheng Q, Zheng S (2012) From poly (N–isopropylacrylamide)–block–poly (ethylene oxide)–block–poly(N–isopropylacrylamide) triblock copolymer to poly (N–isopropylacrylamide)–block–poly (ethylene oxide) hydrogels: synthesis and rapid deswelling and reswelling behavior of hydrogels. J Polym Sci A Polym Chem 50:1717–1727

    Article  CAS  Google Scholar 

  37. Zheng Y, Zheng S (2012) Poly (ethylene oxide)-grafted poly (N-isopropylacrylamide) networks: preparation, characterization and rapid deswelling and reswelling behavior of hydrogels. React Funct Polym 72:176–184

    Article  CAS  Google Scholar 

  38. Yu R, Zheng S (2011) Poly (acrylic acid)-grafted poly (N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior. J Biomater Sci Polym Ed 22:2305–2324

    Article  CAS  Google Scholar 

  39. Johnson RS, Finnegan PS, Wheeler DR, Dirk SM (2011) Photopatterning poly (p-phenylenevinylene) from xanthate precursor polymers. Chem Commun 47:3936–3938

    Article  CAS  Google Scholar 

  40. Mano V, Silva RE, Scarpelli ME, Barbani N, Giusti P (2004) Binary blends based on poly (N–isopropylacrylamide): miscibility studies with PVA, PVP, and PAA. J Appl Polym Sci 92:743–748

    Article  CAS  Google Scholar 

  41. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  42. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N, N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741

    Article  CAS  Google Scholar 

  43. Yi F, Zheng S (2009) Effect of hydrophobic polystyrene microphases on temperature-responsive behavior of poly(N-isopropylacrylamide) hydrogels. Polymer 50:670–678

    Article  CAS  Google Scholar 

  44. Kaneko Y, Sakai K, Kikuchi A, Yoshida R, Sakurai Y, Okano T (1995) Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules 28:7717–7723

    Article  CAS  Google Scholar 

  45. Janovák L, Varga J, Kemény L, Dékány I (2008) Investigation of the structure and swelling of poly(N-isopropyl-acrylamide-acrylamide) and poly(N-isopropyl-acrylamide-acrylic acid) based copolymer and composite hydrogels. Colloid Polym Sci 286:1575–1585

    Article  Google Scholar 

  46. Zhang J, Chu L-Y, Li Y-K, Lee YM (2007) Dual thermo and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Polymer 48:1718–1728

    Article  CAS  Google Scholar 

  47. Champ S, Xue W (2000) Concentrating aqueous solutions of water soluble polymers by thermoreversible swelling of poly [(N–isopropylacrylamide)–co–(acrylic acid)] hydrogels. Macromol Chem Phys 201:931–940

    Article  CAS  Google Scholar 

  48. Yoo MK, Seok WK, Sung YK (2004) Characterization of stimuli–sensitive polymers for biomedical applications. In Macromol. Symp.; Wiley Online Library, Vol. 207: pp 173-186

  49. Tian Q, Zhao X, Tang X, Zhang Y (2003) Hydrophobic association and temperature and pH sensitivity of hydrophobically modified poly (N–isopropylacrylamide/acrylic acid) gels. J Appl Polym Sci 87:2406–2413

    Article  CAS  Google Scholar 

  50. Adem E, Burillo G, Bucio E, Magaña C, Avalos-Borja M (2009) Characterization of interpenetrating networks of acrylic acid (AAc) and N-isopropylacrylamide (NIPAAm) synthesized by ionizing radiation. Radiat Phys Chem 78:549–552

    Article  CAS  Google Scholar 

  51. Burillo G, Briones M, Adem E (2007) IPN’s of acrylic acid and N-isopropylacrylamide by gamma and electron beam irradiation. Nucl Inst Methods Phys Res B 265:104–108

    Article  CAS  Google Scholar 

  52. Xia X, Hu Z, Marquez M (2005) Physically bonded nanoparticle networks: a novel drug delivery system. J Control Release 103:21–30

    Article  CAS  Google Scholar 

  53. Beltran S, Baker JP, Hooper HH, Blanch HW, Prausnitz JM (1991) Swelling equilibria for weakly ionizable, temperature-sensitive hydrogels. Macromolecules 24:549–551

    Article  CAS  Google Scholar 

  54. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    Article  CAS  Google Scholar 

  55. Glatter O, Kratky O (1982) Small angle X-ray scattering; Academic press London, Vol. 102, pp 215–236

  56. Díez-Peña E, Quijada-Garrido I, Barrales-Rienda J (2002) Hydrogen-bonding effects on the dynamic swelling of P (NIPAAm-co-MAA) copolymers. A case of autocatalytic swelling kinetics. Macromolecules 35:8882–8888

    Article  Google Scholar 

  57. Bekturov EA, Bimendina LA (1981) Interpolymer complexes. In Speciality polymers; Springer, pp 99-147

  58. Tsuchida E, Abe K (1982) Interactions between macromolecules in solution and intermacromolecular complexes; Springer, pp 1-119

  59. Bokias G, Staikos G, Iliopoulos I (2000) Solution properties and phase behaviour of copolymers of acrylic acid with N-isopropylacrylamide: the importance of the intrachain hydrogen bonding. Polymer 41:7399–7405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Natural Science Foundation of China (nos. 51133003 and 21274091) was gratefully acknowledged. The authors thank the Shanghai Synchrotron Radiation Facility for support under project nos. 10 sr0260 and 10 sr0126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixun Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, H., Zheng, S. Poly(N-isopropylacrylamide)-block-poly(acrylic acid) hydrogels: synthesis and rapid thermoresponsive properties. Colloid Polym Sci 292, 2633–2645 (2014). https://doi.org/10.1007/s00396-014-3314-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3314-9

Keywords

Navigation