Skip to main content
Log in

Temperature dependence of second critical micelle concentration of dodecyldimethylbenzylammonium bromide in aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The specific conductivity of dodecyldimethylbenzylammonium bromide (C12BBr) in aqueous solutions, in the temperature range of 15 to 40 °C, has been measured as a function of molality. The two breaks which were found on the conductivity against molality plots were attributed to the critical micelle concentration, cmc, and second critical micelle concentration, 2nd cmc, respectively. The ratio of the slopes, S, of the three linear fragments on the plots, S2/S1 and S3/S1, was attributed to the degree of ionization of the micelles at cmc and 2nd cmc respectively. It was shown that the values of the 2nd cmc estimated above 27 °C are only apparent due to thermal disintegration of the micelles. In the temperature range of 15 to 27 °C, the values of the 2nd cmc increase gradually and the plot of the 2nd cmc against temperature is concave. The ratio of 2nd cmc/cmc for C12BBr at 25 °C amounts to 15 and appears to be high compared to the literature values for other surfactants. For comparative purposes the cmc and 2nd cmc values were also estimated conductometrically for decyldimethylbenzylammonium bromide (C10BBr) at 25 °C. The 2nd cmc value for this surfactant is higher compared to the value for the C12 homologue by a factor of 2.6.The standard Gibbs free energies of micellization at cmc and at the 2nd cmc were estimated from the experimental data for both surfactants at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. McBain JW (1913) Trans Faraday Soc 9:99

    Google Scholar 

  2. Rosen MJ (1989) Surfactants and Interfacial Phenomena, 2nd edition, Willey Publishers, New York

  3. Moroi Y (1992) Micelles: Theoretical an Applied Aspects, Plenum Press, New York

  4. Evans DF, Wennerström H (1999) The Colloidal Domain: Where Physics, Chemistry, Biology and Technology meet, 2nd edition, Wiley Publishers, New York

    Google Scholar 

  5. Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution 2nd edition, Wiley Publishers, New York

  6. Mc Bain JW, Laing ME, Titley AJ (1919) J Chem Soc 151:1279

    Google Scholar 

  7. Hess K, Philippoff W, Kiessing H (1939) Kolloid-Z 88:1939

  8. Stauff J (1939) Kolloid-Z 89:224

  9. Ekwall P, Eikren H, Mandell L (1963) Acta Chem Scand 17:111

    CAS  Google Scholar 

  10. Ekwall P, Holmberg P (1965) Acta Chem Scand 19:455

    CAS  Google Scholar 

  11. Ekwall P, Lemström KE, Eikrem H, Holmbreg P (1967) Acta Chem Scand 21:1401

    CAS  Google Scholar 

  12. Miura M, Kodama M (1972) Bull Chem Soc Jpn 45:428

    CAS  Google Scholar 

  13. Kodama M, Miura M (1972) Bull Chem Soc Jpn 45:2265

    CAS  Google Scholar 

  14. Kodama M, Kubota Y, Miura M (1972) Bull Chem Soc Jpn 45:2953

    CAS  Google Scholar 

  15. Sata N, Tyuzyo K (1953) Bull Chem Soc Jpn 26:177

    CAS  Google Scholar 

  16. Okuyama H, Tyuzyo K (1954) Bull Chem Soc Jpn 27:259

    CAS  Google Scholar 

  17. De Lisi R, Fisicaro E, Milioto S (1988) J Sol Chem 17:398

    Google Scholar 

  18. González-Pérez A, Czapkiewicz J, Prieto G, Rodríguez JR (2003) Colloid Polym Sci 281:1191

    Article  Google Scholar 

  19. Treiner C, Makayssi JE (1992) Langmuir 8:794

    CAS  Google Scholar 

  20. González-Pérez A, Czapkiewicz, Del Castillo JL, Rodríguez JR (2001) Colloids Surf A 193:129

    Google Scholar 

  21. Zhao J, Fung BM (1993) Langmuir 9:1228

    CAS  Google Scholar 

  22. Lee YS, Woo KW (1995) J Colloid Interface Sci 169:34

    Article  CAS  Google Scholar 

  23. La Mesa C (1990) J Phys Chem 94:323

    Google Scholar 

  24. Muller N (1993) Langmuir 9:96

    CAS  Google Scholar 

  25. Chen LJ, Lin SY, Huang CC (1998) J Phys Chem B 102:4350

    Article  CAS  Google Scholar 

  26. Rodríguez JR, González-Pérez A, Del Castillo JL, Czapkiewicz J (2002) J Colloid Interface Sci 250:438

    Article  Google Scholar 

  27. Zielinski R, Ikeda S, Nomura H, Kato S (1989) J Colloid Interface Sci 129:175

    CAS  Google Scholar 

  28. González-Pérez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2002) Colloid Polym Sci 280:503

    Article  Google Scholar 

  29. Monk CB (1961) Electrolytic dissociation. Academic, London

  30. Hoffmann H, Ulbright W (1977) Z Phys Chem NF 106:167

    CAS  Google Scholar 

  31. González-Pérez A, Czapkiewicz J, Del Castillo JL, Rodríguez JR (2003) Colloid Polym Sci 280:503

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Xunta de Galicia, (Project PGIDIT03PXIB20601PR). A. González-Pérez is grateful to the University of Santiago de Compostela for his postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. González-Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Pérez, A., Czapkiewicz, J., Ruso, J.M. et al. Temperature dependence of second critical micelle concentration of dodecyldimethylbenzylammonium bromide in aqueous solution . Colloid Polym Sci 282, 1169–1173 (2004). https://doi.org/10.1007/s00396-004-1053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1053-z

Keywords

Navigation