Skip to main content
Log in

Thrombin receptor PAR4 drives canonical NLRP3 inflammasome signaling in the heart

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The deleterious effects of diabetes in the heart are increasingly attributed to inflammatory signaling through the NLRP3 (NOD, LRR and PYD domains-containing protein 3) inflammasome. Thrombin antagonists reduce cardiac remodeling and dysfunction in diabetic mice, in part by suppressing fibrin-driven inflammation. The role of cellular thrombin receptor subtypes in this context is not known. We sought to determine the causal involvement of protease-activated receptors (PAR) in inflammatory signaling of the diabetic heart. Mice with diet-induced diabetes showed increased abundance of pro-caspase-1 and pro-interleukin (IL)-1β in the left ventricle (LV), indicating transcriptional NLRP3 inflammasome priming, and augmented cleavage of active caspase-1 and IL-1β, pointing to canonical NLRP3 inflammasome activation. Caspase-11 activation, which mediates non-canonical NLRP3 inflammasome signaling, was not augmented. Formation of the plasma membrane pore-forming protein N-terminal gasdermin D (GDSMD), a prerequisite for IL-1β secretion, was also higher in diabetic vs. control mouse LV. NLRP3, ASC and IL-18 expression did not differ between the groups, nor did expression of PAR1 or PAR2. PAR3 was nearly undetectable. LV abundance of PAR4 by contrast increased with diabetes and correlated positively with active caspase-1. Genetic deletion of PAR4 in mice prevented the diet-induced cleavage of caspase-1, IL-1β and GDSMD. Right atrial appendages from patients with type 2 diabetes also showed higher levels of PAR4, but not of PAR1 or PAR2, than non-diabetic atrial tissue, along with increased abundance of cleaved caspase-1, IL-1β and GSDMD. Human cardiac fibroblasts maintained in high glucose conditions to mimic diabetes also upregulated PAR4 mRNA and protein, and increased PAR4-dependent IL-1β transcription and secretion in response to thrombin, while PAR1 and PAR2 expressions were unaltered. In conclusion, PAR4 drives caspase-1-dependent IL-1β production through the canonical NLRP3 inflammasome pathway in the diabetic heart, providing mechanistic insights into diabetes-associated cardiac thromboinflammation. The emerging PAR4-selective antagonists may provide a feasible approach to prevent cardiac inflammation in patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Altieri P, Bertolotto M, Fabbi P, Sportelli E, Balbi M, Santini F, Brunelli C, Canepa M, Montecucco F, Ameri P (2018) Thrombin induces protease-activated receptor 1 signaling and activation of human atrial fibroblasts and dabigatran prevents these effects. Int J Cardiol 271:219–227. https://doi.org/10.1016/j.ijcard.2018.05.033

    Article  PubMed  Google Scholar 

  2. Beijers HJ, Ferreira I, Spronk HM, Bravenboer B, Dekker JM, Nijpels G, ten Cate H, Stehouwer CD (2012) Impaired glucose metabolism and type 2 diabetes are associated with hypercoagulability: potential role of central adiposity and low-grade inflammation—the Hoorn Study. Thromb Res 129:557–562. https://doi.org/10.1016/j.thromres.2011.07.033

    Article  CAS  PubMed  Google Scholar 

  3. Bulani Y, Sharma SS (2017) Argatroban attenuates diabetic cardiomyopathy in rats by reducing fibrosis, inflammation, apoptosis, and protease-activated receptor expression. Cardiovasc Drugs Ther 31:255–267. https://doi.org/10.1007/s10557-017-6732-3

    Article  CAS  PubMed  Google Scholar 

  4. Bulani Y, Srinivasan K, Sharma SS (2019) Attenuation of type-1 diabetes-induced cardiovascular dysfunctions by direct thrombin inhibitor in rats: a mechanistic study. Mol Cell Biochem 451:69–78. https://doi.org/10.1007/s11010-018-3394-9

    Article  CAS  PubMed  Google Scholar 

  5. Campello E, Zabeo E, Radu CM, Spiezia L, Gavasso S, Fadin M, Woodhams B, Vettor R, Simioni P (2015) Hypercoagulability in overweight and obese subjects who are asymptomatic for thrombotic events. Thromb Haemost 113:85–96. https://doi.org/10.1160/th14-02-0156

    Article  PubMed  Google Scholar 

  6. Carney DH, Olszewska-Pazdrak B (2008) Could rusalatide acetate be the future drug of choice for diabetic foot ulcers and fracture repair? Expert Opin Pharmacother 9:2717–2726. https://doi.org/10.1517/14656566.9.15.2717

    Article  CAS  PubMed  Google Scholar 

  7. Chaudhary R, Bliden KP, Tantry US, Mohammed N, Mathew D, Gesheff MG, Franzese CJ, Gurbel PA (2016) Association of weight gain with coronary artery disease, inflammation and thrombogenicity. J Thromb Thrombolysis 41:394–403. https://doi.org/10.1007/s11239-015-1327-y

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Chelu MG, Dobrev D, Li N (2018) Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: mechanisms and potential therapeutic implications. Front Physiol 9:1115. https://doi.org/10.3389/fphys.2018.01115

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dangwal S, Rauch BH, Gensch T, Dai L, Bretschneider E, Vogelaar CF, Schror K, Rosenkranz AC (2011) High glucose enhances thrombin responses via protease-activated receptor-4 in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 31:624–633. https://doi.org/10.1161/atvbaha.110.219105

    Article  CAS  PubMed  Google Scholar 

  10. de Ridder GG, Lundblad RL, Pizzo SV (2016) Actions of thrombin in the interstitium. J Thromb Haemost 14:40–47. https://doi.org/10.1111/jth.13191

    Article  CAS  PubMed  Google Scholar 

  11. Domingueti CP, Dusse LM, Carvalho M, de Sousa LP, Gomes KB, Fernandes AP (2016) Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat 30:738–745. https://doi.org/10.1016/j.jdiacomp.2015.12.018

    Article  PubMed  Google Scholar 

  12. Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol 134:1087–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Faria A, Persaud SJ (2017) Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential. Pharmacol Ther 172:50–62. https://doi.org/10.1016/j.pharmthera.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  14. Fender AC, Rauch BH, Geisler T, Schror K (2017) Protease-activated receptor par-4: an inducible switch between thrombosis and vascular inflammation? Thromb Haemost 117:2013–2025. https://doi.org/10.1160/th17-03-0219

    Article  PubMed  Google Scholar 

  15. Fossum TW, Olszewska-Pazdrak B, Mertens MM, Makarski LA, Miller MW, Hein TW, Kuo L, Clubb F, Fuller GM, Carney DH (2008) Tp508 (chrysalin) reverses endothelial dysfunction and increases perfusion and myocardial function in hearts with chronic ischemia. J Cardiovasc Pharmacol Ther 13:214–225. https://doi.org/10.1177/1074248408321468

    Article  CAS  PubMed  Google Scholar 

  16. French SL, Paramitha AC, Moon MJ, Dickins RA, Hamilton JR (2016) Humanizing the protease-activated receptor (par) expression profile in mouse platelets by knocking par1 into the par3 locus reveals par1 expression is not tolerated in mouse platelets. PLoS ONE 11:e0165565. https://doi.org/10.1371/journal.pone.0165565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giordano P, Del Vecchio GC, Cecinati V, Delvecchio M, Altomare M, De Palma F, De Mattia D, Cavallo L, Faienza MF (2011) Metabolic, inflammatory, endothelial and haemostatic markers in a group of italian obese children and adolescents. Eur J Pediatr 170:845–850. https://doi.org/10.1007/s00431-010-1356-7

    Article  CAS  PubMed  Google Scholar 

  18. Gomides LF, Lima OC, Matos NA, Freitas KM, Francischi JN, Tavares JC, Klein A (2014) Blockade of proteinase-activated receptor 4 inhibits neutrophil recruitment in experimental inflammation in mice. Inflamm Res 63:935–941. https://doi.org/10.1007/s00011-014-0767-8

    Article  CAS  PubMed  Google Scholar 

  19. Gorski DJ, Petz A, Reichert C, Twarock S, Grandoch M, Fischer JW (2019) Cardiac fibroblast activation and hyaluronan synthesis in response to hyperglycemia and diet-induced insulin resistance. Sci Rep 9:1827. https://doi.org/10.1038/s41598-018-36140-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Groslambert M, Py BF (2018) Spotlight on the nlrp3 inflammasome pathway. J Inflamm Res 11:359–374. https://doi.org/10.2147/jir.S141220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guarda G, Zenger M, Yazdi AS, Schroder K, Ferrero I, Menu P, Tardivel A, Mattmann C, Tschopp J (2011) Differential expression of nlrp3 among hematopoietic cells. J Immunol 186:2529–2534. https://doi.org/10.4049/jimmunol.1002720

    Article  CAS  PubMed  Google Scholar 

  22. Han X, Nieman MT (2018) Par4 (protease-activated receptor 4): particularly important 4 antiplatelet therapy. Arterioscler Thromb Vasc Biol 38:287–289. https://doi.org/10.1161/atvbaha.117.310550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanna N, Cardin S, Leung TK, Nattel S (2004) Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res 63:236–244. https://doi.org/10.1016/j.cardiores.2004.03.026

    Article  CAS  PubMed  Google Scholar 

  24. Ito K, Date T, Ikegami M, Hongo K, Fujisaki M, Katoh D, Yoshino T, Anzawa R, Nagoshi T, Yamashita S, Inada K, Matsuo S, Yamane T, Yoshimura M (2013) An immunohistochemical analysis of tissue thrombin expression in the human atria. PLoS ONE 8:e65817. https://doi.org/10.1371/journal.pone.0065817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jesmin S, Gando S, Zaedi S, Sakuraya F (2007) Differential expression, time course and distribution of four pars in rats with endotoxin-induced acute lung injury. Inflammation 30:14–27. https://doi.org/10.1007/s10753-006-9017-8

    Article  CAS  PubMed  Google Scholar 

  26. Kleeschulte S, Jerrentrup J, Gorski D, Schmitt J, Fender AC (2018) Evidence for functional par-4 thrombin receptor expression in cardiac fibroblasts and its regulation by high glucose: par-4 in cardiac fibroblasts. Int J Cardiol 252:163–166. https://doi.org/10.1016/j.ijcard.2017.10.019

    Article  PubMed  Google Scholar 

  27. Kopec AK, Abrahams SR, Thornton S, Palumbo JS, Mullins ES, Divanovic S, Weiler H, Owens AP 3rd, Mackman N, Goss A, van Ryn J, Luyendyk JP, Flick MJ (2017) Thrombin promotes diet-induced obesity through fibrin-driven inflammation. J Clin Investig 127:3152–3166. https://doi.org/10.1172/jci92744

    Article  PubMed  Google Scholar 

  28. Kopec AK, Joshi N, Towery KL, Kassel KM, Sullivan BP, Flick MJ, Luyendyk JP (2014) Thrombin inhibition with dabigatran protects against high-fat diet-induced fatty liver disease in mice. J Pharmacol Exp Ther 351:288–297. https://doi.org/10.1124/jpet.114.218545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lagrange J, Didelot M, Mohamadi A, Walton LA, Bloemen S, de Laat B, Louis H, Thornton SN, Derby B, Sherratt MJ, Feve B, Challande P, Akhtar R, Cruickshank JK, Lacolley P, Regnault V (2017) Implication of free fatty acids in thrombin generation and fibrinolysis in vascular inflammation in zucker rats and evolution with aging. Front Physiol 8:949. https://doi.org/10.3389/fphys.2017.00949

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li X, Ke X, Li Z, Li B (2019) Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem Biophys Res Commun 514:1–8. https://doi.org/10.1016/j.bbrc.2019.04.110

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Nishida M, Inui H, Chang J, Zhu Y, Kanno K, Matsuda H, Sairyo M, Okada T, Nakaoka H, Ohama T, Masuda D, Koseki M, Yamashita S, Sakata Y (2019) Rivaroxaban suppresses the progression of ischemic cardiomyopathy in a murine model of diet-induced myocardial infarction. J Atheroscler Thromb 26:915–930. https://doi.org/10.5551/jat.48405

    Article  PubMed  PubMed Central  Google Scholar 

  32. Luo B, Li B, Wang W, Liu X, Liu X, Xia Y, Zhang C, Zhang Y, Zhang M, An F (2014) Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting nlrp3 inflammasome and mapk pathways in a type 2 diabetes rat model. Cardiovasc Drugs Ther 28:33–43. https://doi.org/10.1007/s10557-013-6498-1

    Article  CAS  PubMed  Google Scholar 

  33. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y, An F (2014) Nlrp3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE 9:e104771. https://doi.org/10.1371/journal.pone.0104771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahajan-Thakur S, Sostmann BD, Fender AC, Behrendt D, Felix SB, Schror K, Rauch BH (2014) Sphingosine-1-phosphate induces thrombin receptor par-4 expression to enhance cell migration and cox-2 formation in human monocytes. J Leukoc Biol 96:611–618. https://doi.org/10.1189/jlb.3AB1013-567R

    Article  CAS  PubMed  Google Scholar 

  35. McBane RD 2nd, Miller RS, Hassinger NL, Chesebro JH, Nemerson Y, Owen WG (1997) Tissue prothrombin. Universal distribution in smooth muscle. Arterioscler Thromb Vasc Biol 17:2430–2436. https://doi.org/10.1161/01.atv.17.11.2430

    Article  CAS  PubMed  Google Scholar 

  36. Mihara K, Ramachandran R, Saifeddine M, Hansen KK, Renaux B, Polley D, Gibson S, Vanderboor C, Hollenberg MD (2016) Thrombin-mediated direct activation of proteinase-activated receptor-2: another target for thrombin signaling. Mol Pharmacol 89:606–614. https://doi.org/10.1124/mol.115.102723

    Article  CAS  PubMed  Google Scholar 

  37. Pavic G, Grandoch M, Dangwal S, Jobi K, Rauch BH, Doller A, Oberhuber A, Akhyari P, Schror K, Fischer JW, Fender AC (2014) Thrombin receptor protease-activated receptor 4 is a key regulator of exaggerated intimal thickening in diabetes mellitus. Circulation 130:1700–1711. https://doi.org/10.1161/circulationaha.113.007590

    Article  CAS  PubMed  Google Scholar 

  38. Pavillard LE, Marin-Aguilar F, Bullon P, Cordero MD (2018) Cardiovascular diseases, nlrp3 inflammasome, and western dietary patterns. Pharmacol Res 131:44–50. https://doi.org/10.1016/j.phrs.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  39. Pawlinski R, Fernandes A, Kehrle B, Pedersen B, Parry G, Erlich J, Pyo R, Gutstein D, Zhang J, Castellino F, Melis E, Carmeliet P, Baretton G, Luther T, Taubman M, Rosen E, Mackman N (2002) Tissue factor deficiency causes cardiac fibrosis and left ventricular dysfunction. Proc Natl Acad Sci USA 99:15333–15338. https://doi.org/10.1073/pnas.242501899

    Article  CAS  PubMed  Google Scholar 

  40. Pawlinski R, Tencati M, Hampton CR, Shishido T, Bullard TA, Casey LM, Andrade-Gordon P, Kotzsch M, Spring D, Luther T, Abe J, Pohlman TH, Verrier ED, Blaxall BC, Mackman N (2007) Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation 116:2298–2306. https://doi.org/10.1161/circulationaha.107.692764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pei Z, Deng Q, Babcock SA, He EY, Ren J, Zhang Y (2018) Inhibition of advanced glycation endproduct (age) rescues against streptozotocin-induced diabetic cardiomyopathy: role of autophagy and er stress. Toxicol Lett 284:10–20. https://doi.org/10.1016/j.toxlet.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  42. Pretorius L, Thomson GJA, Adams RCM, Nell TA, Laubscher WA, Pretorius E (2018) Platelet activity and hypercoagulation in type 2 diabetes. Cardiovasc Diabetol 17:141. https://doi.org/10.1186/s12933-018-0783-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pruller F, Raggam RB, Posch V, Almer G, Truschnig-Wilders M, Horejsi R, Moller R, Weghuber D, Ille R, Schnedl W, Mangge H (2012) Trunk weighted obesity, cholesterol levels and low grade inflammation are main determinants for enhanced thrombin generation. Atherosclerosis 220:215–218. https://doi.org/10.1016/j.atherosclerosis.2011.09.035

    Article  CAS  PubMed  Google Scholar 

  44. Qiao J, Wu X, Luo Q, Wei G, Xu M, Wu Y, Liu Y, Li X, Zi J, Ju W, Fu L, Chen C, Wu Q, Zhu S, Qi K, Li D, Li Z, Andrews RK, Zeng L, Gardiner EE, Xu K (2018) Nlrp3 regulates platelet integrin alphaiibbeta3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica 103:1568–1576. https://doi.org/10.3324/haematol.2018.191700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Romano M, Guagnano MT, Pacini G, Vigneri S, Falco A, Marinopiccoli M, Manigrasso MR, Basili S, Davi G (2003) Association of inflammation markers with impaired insulin sensitivity and coagulative activation in obese healthy women. J Clin Endocrinol Metab 88:5321–5326. https://doi.org/10.1210/jc.2003-030508

    Article  CAS  PubMed  Google Scholar 

  46. Sabri A, Alcott SG, Elouardighi H, Pak E, Derian C, Andrade-Gordon P, Kinnally K, Steinberg SF (2003) Neutrophil cathepsin G promotes detachment-induced cardiomyocyte apoptosis via a protease-activated receptor-independent mechanism. J Biol Chem 278:23944–23954. https://doi.org/10.1074/jbc.M302718200

    Article  CAS  PubMed  Google Scholar 

  47. Sapkota B, Shrestha SK, Poudel S (2013) Association of activated partial thromboplastin time and fibrinogen level in patients with type ii diabetes mellitus. BMC Res Notes 6:485. https://doi.org/10.1186/1756-0500-6-485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scott L Jr, Li N, Dobrev D (2019) Role of inflammatory signaling in atrial fibrillation. Int J Cardiol 287:195–200. https://doi.org/10.1016/j.ijcard.2018.10.020

    Article  PubMed  Google Scholar 

  49. Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, de Haan JB (2018) Oxidative stress and nlrp3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol 9:114. https://doi.org/10.3389/fphys.2018.00114

    Article  PubMed  PubMed Central  Google Scholar 

  50. Snead AN, Insel PA (2012) Defining the cellular repertoire of gpcrs identifies a profibrotic role for the most highly expressed receptor, protease-activated receptor 1, in cardiac fibroblasts. FASEB J 26:4540–4547. https://doi.org/10.1096/fj.12-213496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soma P, Swanepoel AC, Bester J, Pretorius E (2017) Tissue factor levels in type 2 diabetes mellitus. Inflamm Res 66:365–368. https://doi.org/10.1007/s00011-017-1030-x

    Article  CAS  PubMed  Google Scholar 

  52. Sonin DL, Wakatsuki T, Routhu KV, Harmann LM, Petersen M, Meyer J, Strande JL (2013) Protease-activated receptor 1 inhibition by sch79797 attenuates left ventricular remodeling and profibrotic activities of cardiac fibroblasts. J Cardiovasc Pharmacol Ther 18:460–475. https://doi.org/10.1177/1074248413485434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sower LE, Payne DA, Meyers R, Carney DH (1999) Thrombin peptide, tp508, induces differential gene expression in fibroblasts through a nonproteolytic activation pathway. Exp Cell Res 247:422–431. https://doi.org/10.1006/excr.1998.4372

    Article  CAS  PubMed  Google Scholar 

  54. Stoppa-Vaucher S, Dirlewanger MA, Meier CA, de Moerloose P, Reber G, Roux-Lombard P, Combescure C, Saudan S, Schwitzgebel VM (2012) Inflammatory and prothrombotic states in obese children of European descent. Obesity (Silver Spring) 20:1662–1668. https://doi.org/10.1038/oby.2012.85

    Article  CAS  Google Scholar 

  55. Takahashi M (2019) Cell-specific roles of nlrp3 inflammasome in myocardial infarction. J Cardiovasc Pharmacol. https://doi.org/10.1097/fjc.0000000000000709

    Article  PubMed  Google Scholar 

  56. Wang Y, Li H, Li Y, Zhao Y, Xiong F, Liu Y, Xue H, Yang Z, Ni S, Sahil A, Che H, Wang L (2019) Coriolus versicolor alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and nlrp3 inflammasome activation. Phytother Res. https://doi.org/10.1002/ptr.6448

    Article  PubMed  PubMed Central  Google Scholar 

  57. Westermann D, Van Linthout S, Dhayat S, Dhayat N, Escher F, Bucker-Gartner C, Spillmann F, Noutsias M, Riad A, Schultheiss HP, Tschope C (2007) Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 56:1834–1841. https://doi.org/10.2337/db06-1662

    Article  CAS  PubMed  Google Scholar 

  58. Wilson AJ, Gill EK, Abudalo RA, Edgar KS, Watson CJ, Grieve DJ (2018) Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart 104:293–299. https://doi.org/10.1136/heartjnl-2017-311448

    Article  CAS  PubMed  Google Scholar 

  59. Wilson SJ, Ismat FA, Wang Z, Cerra M, Narayan H, Raftis J, Gray TJ, Connell S, Garonzik S, Ma X, Yang J, Newby DE (2018) Par4 (protease-activated receptor 4) antagonism with bms-986120 inhibits human ex vivo thrombus formation. Arterioscler Thromb Vasc Biol 38:448–456. https://doi.org/10.1161/atvbaha.117.310104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wong PC, Seiffert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, Allegretto N, Hua J, Harden D, Guay J, Callejo M, Miller MM, Lawrence RM, Banville J, Guy J, Maxwell BD, Priestley ES, Marinier A, Wexler RR, Bouvier M, Gordon DA, Schumacher WA, Yang J (2017) Blockade of protease-activated receptor-4 (par4) provides robust antithrombotic activity with low bleeding. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaf5294

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yang L, Zhao D, Ren J, Yang J (2015) Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta 1852:209–218. https://doi.org/10.1016/j.bbadis.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  62. Yao C, Veleva T, Scott L Jr, Cao S, Li L, Chen G, Jeyabal P, Pan X, Alsina KM, Abu-Taha ID, Ghezelbash S, Reynolds CL, Shen YH, LeMaire SA, Schmitz W, Muller FU, El-Armouche A, Tony Eissa N, Beeton C, Nattel S, Wehrens XHT, Dobrev D, Li N (2018) Enhanced cardiomyocyte nlrp3 inflammasome signaling promotes atrial fibrillation. Circulation 138:2227–2242. https://doi.org/10.1161/circulationaha.118.035202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ye X, Zuo D, Yu L, Zhang L, Tang J, Cui C, Bao L, Zan K, Zhang Z, Yang X, Chen H, Tang H, Zu J, Shi H, Cui G (2017) Ros/txnip pathway contributes to thrombin induced nlrp3 inflammasome activation and cell apoptosis in microglia. Biochem Biophys Res Commun 485:499–505. https://doi.org/10.1016/j.bbrc.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  64. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y (2017) Sglt-2 inhibition with dapagliflozin reduces the activation of the nlrp3/asc inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a dpp4 inhibitor. Cardiovasc Drugs Ther 31:119–132. https://doi.org/10.1007/s10557-017-6725-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bettina Mausa, Barbara Langer and Monika Hagedorn for excellent technical assistance. Financial support was provided by the Ernst und Berta Grimmke-Stiftung Düsseldorf (to ACF), an intramural grant from the medical faculty of the Heinrich-Heine-University Düsseldorf (to ACF) and by grants from the National Institutes of Health (R01-HL131517 and RO1-HL089598 to DD, R01-HL136389 to NL and DD) and the German Research Foundation (DFG, Do 769/4-1 to DD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke C. Fender.

Ethics declarations

Conflict of interest

D. Dobrev is a member of the scientific advisory board of OMEICOS Therapeutics GmbH, a company developing small molecules mimicking the effects of omega-3 fatty acids, and of Acesion Pharma, a company developing selective blockers of small-conductance calcium-dependent potassium channels.

Ethical approval

All human and animal studies were approved by the institutional ethics committees and were performed in accordance with the ethical standards laid down by the Declaration of Helsinki.

Informed consent

All patients gave written informed consent prior to inclusion in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fender, A.C., Kleeschulte, S., Stolte, S. et al. Thrombin receptor PAR4 drives canonical NLRP3 inflammasome signaling in the heart. Basic Res Cardiol 115, 10 (2020). https://doi.org/10.1007/s00395-019-0771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-019-0771-9

Keywords

Navigation