Skip to main content

Advertisement

Log in

Attenuation of type-1 diabetes-induced cardiovascular dysfunctions by direct thrombin inhibitor in rats: a mechanistic study

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic diabetes is associated with ventricular dysfunctions in the absence of hypertension and coronary artery diseases. This condition is termed as diabetic cardiomyopathy (DCM). There is no favourable treatment available for the management of diabetic cardiomyopathy. Recent studies have reported increase in circulating thrombin level among diabetic patients which is responsible for hypercoagulability of blood. Thrombin induces inflammation and fibrosis, and enhances cardiac cell growth and contractility in vitro. In this study, we have investigated the effects of argatroban; a direct thrombin inhibitor against DCM in streptozotocin-induced type-1 diabetes. Diabetes was induced by single dose of streptozotocin (STZ; 50 mg/kg, i.p.) in male Sprague-Dawley rats. After 4 weeks of diabetes induction, the animals were treated with argatroban (0.3 and 1 mg/kg, i.p. daily) for the next 4 weeks. The effect of argatroban was evaluated against diabetes-associated cardiac dysfunction, structural alteration and protein expression. STZ-induced diabetic rats exhibited significant decline in left ventricular functions. Four weeks of treatments with argatroban significantly improved ventricular functions without affecting heart rate. Further, it also protected heart against structural changes induced by diabetes as shown by reduction in fibrosis, hypertrophy and apoptosis. The improvement in cardiac functions and structural changes was associated with significant reduction in left ventricular expression of thrombin receptor also termed as protease-activated receptor-1 or PAR1, p-AKT (ser-473), p-50 NFκB and caspase-3 proteins. This study demonstrates beneficial effects of argatroban via improvement in cardiac functions and structural changes in STZ-induced DCM. These effects may be attributed through reduction in cardiac inflammation, fibrosis and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  CAS  PubMed  Google Scholar 

  2. Sola E, Navarro S, Medina P, Vaya A, Estelles A, Hernandez-Mijares A, Espana F (2009) Activated protein C levels in obesity and weight loss influence. Thromb Res 123:697–700

    Article  CAS  PubMed  Google Scholar 

  3. Romano M, Guagnano MT, Pacini G, Vigneri S, Falco A, Marinopiccoli M, Manigrasso MR, Basili S, Davi G (2003) Association of inflammation markers with impaired insulin sensitivity and coagulative activation in obese healthy women. J Clin Endocrinol Metab 88:5321–5326

    Article  CAS  PubMed  Google Scholar 

  4. Aoki I, Shimoyama K, Aoki N, Homori M, Yanagisawa A, Nakahara K, Kawai Y, Kitamura SI, Ishikawa K (1996) Platelet-dependent thrombin generation in patients with diabetes mellitus: effects of glycemic control on coagulability in diabetes. J Am Coll Cardiol 27:560–566

    Article  CAS  PubMed  Google Scholar 

  5. Ersoz G, Yakaryilmaz A, Turan B (2003) Effect of sodium selenite treatment on platelet aggregation of streptozotocin-induced diabetic rats. Thromb Res 111:363–367

    Article  CAS  PubMed  Google Scholar 

  6. Okazaki M, Zhang H, Tsuji M, Morio Y, Oguchi K (1997) Blood coagulability and fibrinolysis in streptozotocin-induced diabetic rats. J Atheroscler Thromb 4:27–33

    Article  CAS  PubMed  Google Scholar 

  7. Dery O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274:C1429–C1452

    Article  CAS  PubMed  Google Scholar 

  8. Sabri A, Muske G, Zhang H, Pak E, Darrow A, Andrade-Gordon P, Steinberg SF (2000) Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res 86:1054–1061

    Article  CAS  PubMed  Google Scholar 

  9. Sabri A, Guo J, Elouardighi H, Darrow AL, Andrade-Gordon P, Steinberg SF (2003) Mechanisms of protease-activated receptor-4 actions in cardiomyocytes. Role of Src tyrosine kinase. J Biol Chem 278:11714–11720

    Article  CAS  PubMed  Google Scholar 

  10. Kitasato L, Yamaoka-Tojo M, Hashikata T, Ishii S, Kameda R, Shimohama T, Tojo T, Ako J (2014) Factor Xa in mouse fibroblasts may induce fibrosis more than thrombin. Int Heart J 55:357–361

    Article  CAS  PubMed  Google Scholar 

  11. Sabri A, Short J, Guo J, Steinberg SF (2002) Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res 91:532–539

    Article  CAS  PubMed  Google Scholar 

  12. Jumeau C, Rupin A, Chieng-Yane P, Mougenot N, Zahr N, David-Dufilho M, Hatem SN (2016) Direct Thrombin Inhibitors Prevent Left Atrial Remodeling Associated With Heart Failure in Rats. JACC Basic Transl Sci 1:328–339

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mihara M, Aihara K, Ikeda Y, Yoshida S, Kinouchi M, Kurahashi K, Fujinaka Y, Akaike M, Matsumoto T (2010) Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice. Endocrinology 151:513–519

    Article  CAS  PubMed  Google Scholar 

  14. Kassel KM, Sullivan BP, Cui W, Copple BL, Luyendyk JP (2012) Therapeutic administration of the direct thrombin inhibitor argatroban reduces hepatic inflammation in mice with established fatty liver disease. Am J Pathol 181:1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bulani Y, Sharma SS (2017) Argatroban attenuates diabetic cardiomyopathy in rats by reducing fibrosis, inflammation, apoptosis, and protease-activated receptor expression. Cardiovasc Drugs Ther 31:255–267. https://doi.org/10.1007/s10557-017-6732-3

    Article  CAS  PubMed  Google Scholar 

  16. Afzal N, Ganguly PK, Dhalla KS, Pierce GN, Singal PK, Dhalla NS (1988) Beneficial effects of verapamil in diabetic cardiomyopathy. Diabetes 37:936–942

    Article  CAS  PubMed  Google Scholar 

  17. Miric G, Dallemagne C, Endre Z, Margolin S, Taylor SM, Brown L (2001) Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol 133:687–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pacher P, Nagayama T, Mukhopadhyay P, Batkai S, Kass DA (2008) Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc 3:1422–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  20. Radovits T, Korkmaz S, Loganathan S, Barnucz E, Bomicke T, Arif R, Karck M, Szabo G (2009) Comparative investigation of the left ventricular pressure-volume relationship in rat models of type 1 and type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 297:H125–H133

    Article  CAS  PubMed  Google Scholar 

  21. Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol Heart Circ Physiol 281:H1137–H1147

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Wang J, Takeda N, Binaglia L, Panagia V, Dhalla NS (1999) Changes in cardiac protein kinase C activities and isozymes in streptozotocin-induced diabetes. Am J Physiol 277:E798–E804

    CAS  PubMed  Google Scholar 

  23. Satheesan S, Figarola JL, Dabbs T, Rahbar S, Ermel R (2014) Effects of a new advanced glycation inhibitor, LR-90, on mitigating arterial stiffening and improving arterial elasticity and compliance in a diabetic rat model: aortic impedance analysis. Br J Pharmacol 171:3103–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katovich MJ, Hanley K, Strubbe G, Wright BE (1995) Effects of streptozotocin-induced diabetes and insulin treatment on blood pressure in the male rat. Proc Soc Exp Biol Med 208:300–306

    Article  CAS  PubMed  Google Scholar 

  25. Howarth FC, Al-Shamsi N, Al-Qaydi M, Al-Mazrouei M, Qureshi A, Chandranath SI, Kazzam E, Adem A (2006) Effects of brain natriuretic peptide on contraction and intracellular Ca2+ in ventricular myocytes from the streptozotocin-induced diabetic rat. Ann N Y Acad Sci 1084:155–165

    Article  CAS  PubMed  Google Scholar 

  26. Xia Z, Kuo KH, Nagareddy PR, Wang F, Guo Z, Guo T, Jiang J, McNeill JH (2007) N-acetylcysteine attenuates PKCbeta2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats. Cardiovasc Res 73:770–782

    Article  CAS  PubMed  Google Scholar 

  27. Pawlinski R, Tencati M, Hampton CR, Shishido T, Bullard TA, Casey LM, Andrade-Gordon P, Kotzsch M, Spring D, Luther T, Abe J, Pohlman TH, Verrier ED, Blaxall BC, Mackman N (2007) Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation 116:2298–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Howell DC, Goldsack NR, Marshall RP, McAnulty RJ, Starke R, Purdy G, Laurent GJ, Chambers RC (2001) Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am J Pathol 159:1383–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xin M, Olson EN, Bassel-Duby R (2013) Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 14:529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Snead AN, Insel PA (2012) Defining the cellular repertoire of GPCRs identifies a profibrotic role for the most highly expressed receptor, protease-activated receptor 1, in cardiac fibroblasts. FASEB J 26:4540–4547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spronk HM, De Jong AM, Verheule S, De Boer HC, Maass AH, Lau DH, Rienstra M, van Hunnik A, Kuiper M, Lumeij S, Zeemering S, Linz D, Kamphuisen PW, Ten Cate H, Crijns HJ, Van Gelder IC, van Zonneveld AJ, Schotten U (2017) Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur Heart J 38:38–50

    Article  CAS  PubMed  Google Scholar 

  32. Sonin DL, Wakatsuki T, Routhu KV, Harmann LM, Petersen M, Meyer J, Strande JL (2013) Protease-activated receptor 1 inhibition by SCH79797 attenuates left ventricular remodeling and profibrotic activities of cardiac fibroblasts. J Cardiovasc Pharmacol Ther 18:460–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang JN, Chen J, Xiao M (2017) A protease-activated receptor 1 antagonist protects against global cerebral ischemia/reperfusion injury after asphyxial cardiac arrest in rabbits. Neural Regen Res 12:242–249

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang S, Liu Y, Wang Z, Liu J, Gu Z, Xu Q, Su L (2017) PAR1-mediated c-Jun activation promotes heat stress-induced early stage apoptosis of human umbilical vein endothelial cells. Mol Med Rep 15:2595–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mariappan N, Elks CM, Sriramula S, Guggilam A, Liu Z, Borkhsenious O, Francis J (2010) NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc Res 85:473–483

    Article  CAS  PubMed  Google Scholar 

  36. Nishio Y, Kashiwagi A, Taki H, Shinozaki K, Maeno Y, Kojima H, Maegawa H, Haneda M, Hidaka H, Yasuda H, Horiike K, Kikkawa R (1998) Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats. Diabetes 47:1318–1325

    Article  CAS  PubMed  Google Scholar 

  37. Padiya R, Chowdhury D, Borkar R, Srinivas R, Pal Bhadra M, Banerjee SK (2014) Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE 9:e94228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki H, Kayama Y, Sakamoto M, Iuchi H, Shimizu I, Yoshino T, Katoh D, Nagoshi T, Tojo K, Minamino T, Yoshimura M, Utsunomiya K (2015) Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes 64:618–630

    Article  CAS  PubMed  Google Scholar 

  39. Thomas CM, Yong QC, Rosa RM, Seqqat R, Gopal S, Casarini DE, Jones WK, Gupta S, Baker KM, Kumar R (2014) Cardiac-specific suppression of NF-kappaB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am J Physiol Heart Circ Physiol 307:H1036–H1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lorenzo O, Picatoste B, Ares-Carrasco S, Ramirez E, Egido J, Tunon J (2011) Potential role of nuclear factor kappaB in diabetic cardiomyopathy. Mediators Inflamm 2011. https://doi.org/10.1155/2011/652097

  41. Lannan KL, Sahler J, Kim N, Spinelli SL, Maggirwar SB, Garraud O, Cognasse F, Blumberg N, Phipps RP (2015) Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 6:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin SJ, Liu Y, Deng SH, Liao LH, Lin TL, Ning Q, Luo XP (2015) Neuroprotective effects of activated protein C on intrauterine inflammation-induced neonatal white matter injury are associated with the downregulation of fibrinogen-like protein 2/fibroleukin prothrombinase and the inhibition of pro-inflammatory cytokine expression. Int J Mol Med 35:1199–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kassel KM, Owens AP 3rd, Rockwell CE, Sullivan BP, Wang R, Tawfik O, Li G, Guo GL, Mackman N, Luyendyk JP (2011) Protease-activated receptor 1 and hematopoietic cell tissue factor are required for hepatic steatosis in mice fed a Western diet. Am J Pathol 179:2278–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, India for providing funding to carry out this research work.

Funding

Funding was received from Ministry of Chemicals and Fertilizers, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

YB performed the experiments and analysed the data. SSS conceived the study. SSS and KS were instrumental in designing the experiments and writing the manuscript.

Corresponding author

Correspondence to Shyam Sunder Sharma.

Ethics declarations

Conflict of interest

There is no conflict of interest associated with this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulani, Y., Srinivasan, K. & Sharma, S.S. Attenuation of type-1 diabetes-induced cardiovascular dysfunctions by direct thrombin inhibitor in rats: a mechanistic study. Mol Cell Biochem 451, 69–78 (2019). https://doi.org/10.1007/s11010-018-3394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3394-9

Keywords

Navigation