Skip to main content

Advertisement

Log in

The spleen contributes importantly to myocardial infarct exacerbation during post-ischemic reperfusion in mice via signaling between cardiac HMGB1 and splenic RAGE

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The spleen plays a critical role in post-infarct myocardial remodeling. However, the role of the spleen in exacerbating myocardial infarction (MI) during acute ischemia/reperfusion (I/R) injury is unknown. The present study tests the hypothesis that splenic leukocytes are activated by substances released from ischemic myocardium to subsequently exacerbate myocardial injury during reperfusion. The left coronary artery in C57BL/6 mice underwent various durations of occlusion followed by 60 min of reperfusion (denoted as min/min of I/R) with or without splenectomy prior to I/R injury. Splenectomy significantly decreased myocardial infarct size (IS) in 40′/60′ and 50′/60′ groups (p < 0.05); however, it had no effect on IS in 10′/60′, 20′/60′ and 30′/60′ groups (p = NS). In the 20′/60′ group, infusion of 40-min ischemic heart homogenate (40-IHH) upon reperfusion increased IS by >threefold versus infusion of 10-IHH (p < 0.05). Splenectomy abolished the infarct-exacerbating effect of 40-IHH, which was restored by splenic leukocyte adoptive transfer (SPAT). Furthermore, depletion of HMGB1 in the 40-IHH group abolished its infarct-exacerbating effect (p < 0.05), and 40-IHH failed to increase IS in both RAGE−/− mice and splenectomized wild-type mice with SPAT from RAGE−/− mice. The injection of 40-IHH significantly increased formyl peptide receptor 1 (FPR1) expression in sham spleens when compared to 10-IHH-treated sham and control mice. cFLFLF, a specific FPR1 antagonist, reduced myocardial neutrophil infiltration and abrogated the infarct-exacerbating effect of 40-IHH during reperfusion. A cardio (HMGB1)–splenic (RAGE receptor) signaling axis exists and contributes to myocardial infarct exacerbation during reperfusion after prolonged ischemic insults by activating splenic leukocytes. The FPR1 is a potential therapeutic target for inhibiting the cardio–splenic axis that augments infarct size during post-ischemic reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, Song F, Bakr S, Szabolcs M, D’Agati V, Liu R, Homma S, Schmidt AM, Yan SF, Ramasamy R (2008) RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am J Physiol Heart Circ Physiol 294:H1823–H1832. doi:10.1152/ajpheart.01210.2007

    Article  CAS  PubMed  Google Scholar 

  2. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbaurl H, Nawroth PP, Remppis A, Katus HA, Bierhaus A (2008) High-mobility group box-1 in ischemia–reperfusion injury of the heart. Circulation 117:3216–3226. doi:10.1161/CIRCULATIONAHA.108.769331

    Article  CAS  PubMed  Google Scholar 

  3. Appleyard RF, Cohn LH (1993) Myocardial stunning and reperfusion injury in cardiac surgery. J Card Surg 8:316–324

    Article  CAS  PubMed  Google Scholar 

  4. Bagai A, Dangas GD, Stone GW, Granger CB (2014) Reperfusion strategies in acute coronary syndromes. Circ Res 114:1918–1928. doi:10.1161/CIRCRESAHA.114.302744

    Article  CAS  PubMed  Google Scholar 

  5. Bainey KR, Armstrong PW (2014) Clinical perspectives on reperfusion injury in acute myocardial infarction. Am Heart J 167:637–645. doi:10.1016/j.ahj.2014.01.015

    Article  PubMed  Google Scholar 

  6. Berthelot F, Fattoum L, Casulli S, Gozlan J, Marechal V, Elbim C (2012) The effect of HMGB1, a damage-associated molecular pattern molecule, on polymorphonuclear neutrophil migration depends on its concentration. J Innate Immun 4:41–58. doi:10.1159/000328798

    Article  CAS  PubMed  Google Scholar 

  7. Bucciarelli LG, Kaneko M, Ananthakrishnan R, Harja E, Lee LK, Hwang YC, Lerner S, Bakr S, Li Q, Lu Y, Song F, Qu W, Gomez T, Zou YS, Yan SF, Schmidt AM, Ramasamy R (2006) Receptor for advanced-glycation end products: key modulator of myocardial ischemic injury. Circulation 113:1226–1234. doi:10.1161/CIRCULATIONAHA.105.575993

    Article  CAS  PubMed  Google Scholar 

  8. Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ, Gore JM, Weaver WD, Rogers WJ, Tiefenbrunn AJ (2000) Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283:2941–2947

    Article  CAS  PubMed  Google Scholar 

  9. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE (2008) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83:64–70. doi:10.1189/jlb.0407247

    Article  CAS  PubMed  Google Scholar 

  10. Emami H, Singh P, MacNabb M, Vucic E, Lavender Z, Rudd JH, Fayad ZA, Lehrer-Graiwer J, Korsgren M, Figueroa AL, Fredrickson J, Rubin B, Hoffmann U, Truong QA, Min JK, Baruch A, Nasir K, Nahrendorf M, Tawakol A (2015) Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging 8:121–130. doi:10.1016/j.jcmg.2014.10.009

    Article  PubMed  Google Scholar 

  11. Frenkel D, Pachori AS, Zhang L, Dembinsky-Vaknin A, Farfara D, Petrovic-Stojkovic S, Dzau VJ, Weiner HL (2009) Nasal vaccination with troponin reduces troponin specific T-cell responses and improves heart function in myocardial ischemia–reperfusion injury. JACC Cardiovasc Imaging 21:817–829. doi:10.1093/intimm/dxp051

    CAS  Google Scholar 

  12. Ge L, Zhou X, Ji WJ, Lu RY, Zhang Y, Zhang YD, Ma YQ, Zhao JH, Li YM (2015) Neutrophil extracellular traps in ischemia–reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol 308:H500–H509. doi:10.1152/ajpheart.00381.2014

    Article  CAS  PubMed  Google Scholar 

  13. Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, Klibanov AL, Kalantari K, Rosin DL, Okusa MD (2013) Ultrasound prevents renal ischemia–reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol 24:1451–1460. doi:10.1681/ASN.2013010084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi:10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  15. Heusch G, Botker HE, Przyklenk K, Redington A, Yellon D (2015) Remote ischemic conditioning. J Am Coll Cardiol 65:177–195. doi:10.1016/j.jacc.2014.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hiroi T, Wajima T, Negoro T, Ishii M, Nakano Y, Kiuchi Y, Mori Y, Shimizu S (2013) Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc Res 97:271–281. doi:10.1093/cvr/cvs332

    Article  CAS  PubMed  Google Scholar 

  17. Homma T, Kinugawa S, Takahashi M, Sobirin MA, Saito A, Fukushima A, Suga T, Takada S, Kadoguchi T, Masaki Y, Furihata T, Taniguchi M, Nakayama T, Ishimori N, Iwabuchi K, Tsutsui H (2013) Activation of invariant natural killer T cells by alpha-galactosylceramide ameliorates myocardial ischemia/reperfusion injury in mice. J Mol Cell Cardiol 62:179–188. doi:10.1016/j.yjmcc.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  18. Hu X, Fu W, Jiang H (2012) HMGB1: a potential therapeutic target for myocardial ischemia and reperfusion injury. Int J Cardiol 155:489. doi:10.1016/j.ijcard.2011.12.066

    Article  PubMed  Google Scholar 

  19. Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM, Mu X, Loike JD, Jenkins RE, Antoine DJ, Schwabe RF (2014) The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest 125:539–550. doi:10.1172/JCI76887

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ibanez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471. doi:10.1016/j.jacc.2015.02.032

    Article  PubMed  Google Scholar 

  21. Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD (2014) Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res 114:266–282. doi:10.1161/CIRCRESAHA.113.301720

    Article  CAS  PubMed  Google Scholar 

  22. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173–1179. doi:10.1038/nm1315

    Article  CAS  PubMed  Google Scholar 

  23. Jin C, Cleveland JC, Ao L, Li J, Zeng Q, Fullerton DA, Meng X (2014) Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med 20:280–289. doi:10.2119/molmed.2014.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kain V, Prabhu SD, Halade GV (2014) Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol 109:444. doi:10.1007/s00395-014-0444-7

    Article  CAS  PubMed  Google Scholar 

  25. Kikuchi K, Tancharoen S, Ito T, Morimoto-Yamashita Y, Miura N, Kawahara K, Maruyama I, Murai Y, Tanaka E (2013) Potential of the angiotensin receptor blockers (ARBs) telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke. Int J Mol Sci 14:18899–18924. doi:10.3390/ijms140918899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y, Chudnovskiy A, Figueiredo JL, Sosnovik DE, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M (2010) Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 107:1364–1373. doi:10.1161/CIRCRESAHA.110.227454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Si R, Feng Y, Chen HH, Zou L, Wang E, Zhang M, Warren HS, Sosnovik DE, Chao W (2011) Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. J Biol Chem 286:31308–31319. doi:10.1074/jbc.M111.246124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mandal P, Novotny M, Hamilton TA (2005) Lipopolysaccharide induces formyl peptide receptor 1 gene expression in macrophages and neutrophils via transcriptional and posttranscriptional mechanisms. J Immunol 175:6085–6091

    Article  CAS  PubMed  Google Scholar 

  29. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305. doi:10.1126/science.1071059

    Article  CAS  PubMed  Google Scholar 

  30. McDonald KA, Huang H, Tohme S, Loughran P, Ferrero K, Billiar T, Tsung A (2014) The TLR4 antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of HMGB1 signaling. Mol Med. doi:10.2119/molmed.2014.00076

    Google Scholar 

  31. Murphy SL, Xu J, Kochanek KD (2013) Deaths: final data for 2010. Natl Vital Stat Rep 61:1–117

    PubMed  Google Scholar 

  32. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047. doi:10.1084/jem.20070885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, Ballantyne CM, Gahmberg CG, Bianchi ME, Nawroth PP, Chavakis T (2007) A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26:1129–1139. doi:10.1038/sj.emboj.7601552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panaro MA, Acquafredda A, Sisto M, Lisi S, Maffione AB, Mitolo V (2006) Biological role of the N-formyl peptide receptors. Immunopharmacol Immunotoxicol 28:103–127. doi:10.1080/08923970600625975

    Article  CAS  PubMed  Google Scholar 

  35. Rohde D, Schon C, Boerries M, Didrihsone I, Ritterhoff J, Kubatzky KF, Volkers M, Herzog N, Mahler M, Tsoporis JN, Parker TG, Linke B, Giannitsis E, Gao E, Peppel K, Katus HA, Most P (2014) S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Toll-like receptor 4. EMBO Mol Med 6:778–794. doi:10.15252/emmm.201303498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Serebruany VL, Solomon SR, Herzog WR, Gurbel PA (1998) Plasma fibronectin during myocardial ischemia–reperfusion: effects of magnesium, diltiazem, and a novel Mac-1 inhibitor. Am J Hematol 57:309–314

    Article  CAS  PubMed  Google Scholar 

  37. Shang L, Ananthakrishnan R, Li Q, Quadri N, Abdillahi M, Zhu Z, Qu W, Rosario R, Toure F, Yan SF, Schmidt AM, Ramasamy R (2010) RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways. PLoS One 5:e10092. doi:10.1371/journal.pone.0010092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma AK, LaPar DJ, Stone ML, Zhao Y, Kron IL, Laubach VE (2013) Receptor for advanced glycation end products (RAGE) on iNKT cells mediates lung ischemia–reperfusion injury. Am J Transplant 13:2255–2267. doi:10.1111/ajt.12368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616. doi:10.1126/science.1175202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian Y, French BA, Kron IL, Yang Z (2015) Splenic leukocytes mediate the hyperglycemic exacerbation of myocardial infarct size in mice. Basic Res Cardiol 110:39. doi:10.1007/s00395-015-0496-3

    Article  CAS  PubMed  Google Scholar 

  41. Tian Y, Gigliotti JC, Wu D, Klibanov AL, Kron IL, Yang Z (2015) Abstract 12972: ultrasound of the spleen reduces myocardial ischemia–reperfusion injury by stimulating a splenic anti-inflammatory pathway. Circulation 132:A12972

    Article  Google Scholar 

  42. Tian Y, Zhang W, Xia D, Modi P, Liang D, Wei M (2011) Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway. J Biomed Sci 18:53. doi:10.1186/1423-0127-18-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van der Laan AM, Ter Horst EN, Delewi R, Begieneman MP, Krijnen PA, Hirsch A, Lavaei M, Nahrendorf M, Horrevoets AJ, Niessen HW, Piek JJ (2014) Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur Heart J 35:376–385. doi:10.1093/eurheartj/eht331

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  CAS  PubMed  Google Scholar 

  45. Wu H, Ma J, Wang P, Corpuz TM, Panchapakesan U, Wyburn KR, Chadban SJ (2010) HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol 21:1878–1890. doi:10.1681/ASN.2009101048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wystrychowski W, Filipczyk L, Cierpka L, Obuchowicz E, Wiecek A, Wystrychowski A (2014) Splenectomy attenuates the course of kidney ischemia–reperfusion injury in rats. Transplant Proc 46:2558–2561. doi:10.1016/j.transproceed.2014.09.056

    Article  CAS  PubMed  Google Scholar 

  47. Xiao L, Zhang Y, Berr SS, Chordia MD, Pramoonjago P, Pu L, Pan D (2012) A novel near-infrared fluorescence imaging probe for in vivo neutrophil tracking. Mol Imaging 11:372–382

    CAS  PubMed  Google Scholar 

  48. Xu H, Yao Y, Su Z, Yang Y, Kao R, Martin CM, Rui T (2011) Endogenous HMGB1 contributes to ischemia–reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-&alpha;/JNK. Am J Physiol Heart Circ Physiol 300:H913–H921. doi:10.1152/ajpheart.00703.2010

    Article  CAS  PubMed  Google Scholar 

  49. Xu Y, Huo Y, Toufektsian MC, Ramos SI, Ma Y, Tejani AD, French BA, Yang Z (2006) Activated platelets contribute importantly to myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 290:H692–H699. doi:10.1152/ajpheart.00634.2005

    Article  CAS  PubMed  Google Scholar 

  50. Yang H, Antoine DJ, Andersson U, Tracey KJ (2013) The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93:865–873. doi:10.1189/jlb.1212662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang XM, Cui L, White J, Kuck J, Ruchko MV, Wilson GL, Alexeyev M, Gillespie MN, Downey JM, Cohen MV (2015) Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion. Basic Res Cardiol 110:3. doi:10.1007/s00395-014-0459-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Z, Day YJ, Toufektsian MC, Ramos SI, Marshall M, Wang XQ, French BA, Linden J (2005) Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111:2190–2197. doi:10.1161/01.CIR.0000163586.62253.A5

    Article  CAS  PubMed  Google Scholar 

  53. Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, Marshall MA, French BA, Linden J (2006) Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114:2056–2064. doi:10.1161/CIRCULATIONAHA.106.649244

    Article  CAS  PubMed  Google Scholar 

  54. Yang Z, Linden J, Berr SS, Kron IL, Beller GA, French BA (2008) Timing of adenosine 2A receptor stimulation relative to reperfusion has differential effects on infarct size and cardiac function as assessed in mice by MRI. Am J Physiol Heart Circ Physiol 295:H2328–H2335. doi:10.1152/ajpheart.00091.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang Z, Tian Y, Liu Y, Hennessy S, Kron IL, French BA (2013) Acute hyperglycemia abolishes ischemic preconditioning by inhibiting Akt phosphorylation: normalizing blood glucose before ischemia restores ischemic preconditioning. Oxid Med Cell Longev 2013:329183. doi:10.1155/2013/329183

    PubMed  PubMed Central  Google Scholar 

  56. Zhang BJ, Men XJ, Lu ZQ, Li HY, Qiu W, Hu XQ (2013) Splenectomy protects experimental rats from cerebral damage after stroke due to anti-inflammatory effects. Chin Med J (Engl) 126:2354–2360

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zequan Yang.

Ethics declarations

Funding sources

This study was funded in part by a University of Virginia School of Medicine Collaborative Science Pilot Grant and an NIH R01 HL130082 to ZY and a National Natural Science Foundation of China Grant (81400213) to YT.

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Pan, D., Chordia, M.D. et al. The spleen contributes importantly to myocardial infarct exacerbation during post-ischemic reperfusion in mice via signaling between cardiac HMGB1 and splenic RAGE. Basic Res Cardiol 111, 62 (2016). https://doi.org/10.1007/s00395-016-0583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0583-0

Keywords

Navigation