Skip to main content
Log in

Prostaglandin E1 facilitates inotropic effects of 5-HT4 serotonin receptors and β-adrenoceptors in failing human heart

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Prostaglandins have displayed both beneficial and detrimental effects in clinical studies in patients with severe heart failure. Prostaglandins are known to increase cardiac output, but the mechanism is not clarified. Here, we tested the hypothesis that prostaglandins can increase contractility in human heart by amplifying cAMP-dependent inotropic responses. Contractility was measured ex vivo in isolated left ventricular strips and phosphodiesterase (PDE) and adenylyl cyclase (AC) activity was measured in homogenates or membranes from failing human left ventricles. PGE1 (1 µM) alone did not modify contractility, but given prior, amplified maximal serotonin (5-HT)-evoked (10 µM) contractile responses mediated by 5-HT4 receptors several fold (24 ± 7 % with PGE1 vs. 3 ± 2 % above basal with 5-HT alone). The 5-HT4-mediated inotropic response was amplified by the PDE3 inhibitor cilostamide and further amplified in combination with PGE1 (26 ± 6 vs. 56 ± 12 % above basal). PGE1 reduced the time to reach 90 % of both the maximal 5-HT- and isoproterenol-evoked inotropic response compared to 5-HT or isoproterenol alone. PGE1 did not modify PDE activity in the homogenate, either alone or when given simultaneously with PDE3 and/or PDE4 inhibitors. Neither 5-HT- nor isoproterenol-stimulated AC activity was significantly amplified by PGE1. Sensitivity of ventricular strips to Ca2+ was not enhanced in the presence of PGE1. Our results show that PGE1 can enhance cAMP-mediated responses in failing human left ventricle, through a mechanism independent of PDE inhibition, amplification of AC activity or increasing sensitivity to calcium. This effect of PGE1 possibly contributes to the increase of cardiac output, independent of decreased afterload, observed after prostaglandin administration in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afzal F, Andressen KW, Mørk HK, Aronsen JM, Sjaastad I, Dahl CP, Skomedal T, Levy FO, Osnes JB, Qvigstad E (2008) 5-HT4-elicited positive inotropic response is mediated by cAMP and regulated by PDE3 in failing rat and human cardiac ventricles. Br J Pharmacol 155:1005–1014. doi:10.1038/bjp.2008.339

    Article  PubMed  CAS  Google Scholar 

  2. Ariens EJ, Simonis AM (1964) A molecular basis for drug action. The interaction of one or more drugs with different receptors. J Pharm Pharmacol 16:289–312. doi:10.1111/j.2042-7158.1964.tb07461.x

    Article  CAS  Google Scholar 

  3. Brattelid T, Qvigstad E, Lynham JA, Molenaar P, Aass H, Geiran O, Skomedal T, Osnes JB, Levy FO, Kaumann AJ (2004) Functional serotonin 5-HT4 receptors in porcine and human ventricular myocardium with increased 5-HT4 mRNA in heart failure. Naunyn Schmiedebergs Arch Pharmacol 370:157–166. doi:10.1007/s00210-004-0963-0

    Article  PubMed  CAS  Google Scholar 

  4. Califf RM, Adams KF, McKenna WJ, Gheorghiade M, Uretsky BF, McNulty SE, Darius H, Schulman K, Zannad F, Handberg-Thurmond E, Harrell FE Jr, Wheeler W, Soler-Soler J, Swedberg K (1997) A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: the Flolan International Randomized Survival Trial (FIRST). Am Heart J 134:44–54. doi:10.1016/S0002-8703(97)70105-4

    Article  PubMed  CAS  Google Scholar 

  5. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823. doi:10.1056/NEJM198409273111303

    Article  PubMed  CAS  Google Scholar 

  6. Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X, Houslay MD, Baillie GS, Zaccolo M (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103:836–844. doi:10.1161/CIRCRESAHA.108.174813

    Google Scholar 

  7. Domanski MJ, Krause-Steinrauf H, Massie BM, Deedwania P, Follmann D, Kovar D, Murray D, Oren R, Rosenberg Y, Young J, Zile M, Eichhorn E (2003) A comparative analysis of the results from 4 trials of beta-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS. J Card Fail 9:354–363. doi:S1071916403001337

    Article  PubMed  CAS  Google Scholar 

  8. Feron O, Smith TW, Michel T, Kelly RA (1997) Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272:17744–17748. doi:10.1074/jbc.272.28.17744

    Article  PubMed  CAS  Google Scholar 

  9. Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828. doi:10.1161/01.RES.0000246118.98832.04

    Article  PubMed  CAS  Google Scholar 

  10. Fontana M, Olschewski H, Olschewski A, Schluter KD (2007) Treprostinil potentiates the positive inotropic effect of catecholamines in adult rat ventricular cardiomyocytes. Br J Pharmacol 151:779–786. doi:10.1038/sj.bjp.0707300

    Article  PubMed  CAS  Google Scholar 

  11. Haworth RS, Cuello F, Avkiran M (2011) Regulation by phosphodiesterase isoforms of protein kinase A-mediated attenuation of myocardial protein kinase D activation. Basic Res Cardiol 106:51–63. doi:10.1007/s00395-010-0116-1

    Article  PubMed  CAS  Google Scholar 

  12. Hussain RI, Afzal F, Mørk HK, Aronsen JM, Sjaastad I, Osnes JB, Skomedal T, Levy FO, Krobert KA (2011) Cyclic AMP-dependent inotropic effects are differentially regulated by muscarinic Gi-dependent constitutive inhibition of adenylyl cyclase in failing rat ventricle. Br J Pharmacol 162:908–916. doi:10.1111/j.1476-5381.2010.01097.x

    Article  PubMed  CAS  Google Scholar 

  13. Kawabe J, Iwami G, Ebina T, Ohno S, Katada T, Ueda Y, Homcy CJ, Ishikawa Y (1994) Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem 269:16554–16558

    PubMed  CAS  Google Scholar 

  14. Kieler-Jensen N, Lundin S, Ricksten SE (1995) Vasodilator therapy after heart transplantation: effects of inhaled nitric oxide and intravenous prostacyclin, prostaglandin E1, and sodium nitroprusside. J Heart Lung Transplant 14:436–443

    PubMed  CAS  Google Scholar 

  15. Kooij V, Boontje N, Zaremba R, Jaquet K, dos Remedios C, Stienen GJM, van der Velden J (2010) Protein kinase C alpha and epsilon phosphorylation of troponin and myosin binding protein C reduce Ca2+ sensitivity in human myocardium. Basic Res Cardiol 105:289–300. doi:10.1007/s00395-009-0053-z

    Article  PubMed  CAS  Google Scholar 

  16. Krobert KA, Bach T, Syversveen T, Kvingedal AM, Levy FO (2001) The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch Pharmacol 363:620–632

    Article  PubMed  CAS  Google Scholar 

  17. Larsen KO, Sjaastad I, Svindland A, Krobert KA, Skjonsberg OH, Christensen G (2006) Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice. Am J Physiol Heart Circ Physiol 291:H507–H516. doi:10.1152/ajpheart.00862.2005

    Article  PubMed  CAS  Google Scholar 

  18. Lee DI, Vahebi S, Tocchetti CG, Barouch LA, Solaro RJ, Takimoto E, Kass DA (2010) PDE5A suppression of acute beta-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res Cardiol 105:337–347. doi:10.1007/s00395-010-0084-5

    Article  PubMed  CAS  Google Scholar 

  19. Leineweber K, Böhm M, Heusch G (2006) Cyclic Adenosine Monophosphate in Acute Myocardial Infarction With Heart Failure. Circulation 114:365–367. doi:10.1161/circulationaha.106.642132

    Article  PubMed  Google Scholar 

  20. Lygren B, Carlson CR, Santamaria K, Lissandron V, McSorley T, Litzenberg J, Lorenz D, Wiesner B, Rosenthal W, Zaccolo M, Tasken K, Klussmann E (2007) AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep 8:1061–1067. doi:10.1038/sj.embor.7401081

    Article  PubMed  CAS  Google Scholar 

  21. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A (1998) Elevated levels of 8-iso-prostaglandin F in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97:1536–1539

    Article  PubMed  CAS  Google Scholar 

  22. Marchmont RJ, Houslay MD (1980) A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J 187:381–392

    PubMed  CAS  Google Scholar 

  23. Mauban JR, O’Donnell M, Warrier S, Manni S, Bond M (2009) AKAP-scaffolding proteins and regulation of cardiac physiology. Physiology 24:78–87. doi:10.1152/physiol.00041.2008

    Article  PubMed  CAS  Google Scholar 

  24. Metsa-Ketela T (1981) Cyclic AMP-dependent and -independent effects of prostaglandins on the contraction-relaxation cycle of spontaneously beating isolated rat atria. Acta Physiol Scand 112:481–485. doi:10.1152/physiol.00041.2008

    Article  PubMed  CAS  Google Scholar 

  25. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657. doi:10.1126/science.1185988

    Article  PubMed  CAS  Google Scholar 

  26. Owens P, O’Brien E (1999) Hypotension in patients with coronary disease: can profound hypotensive events cause myocardial ischaemic events? Heart 82:477–481

    PubMed  CAS  Google Scholar 

  27. Patel HH, Murray F, Insel PA (2008) G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol 186:167–184 doi: 10.1007/978-3-540-72843-6_7

  28. Patterson JH, Adams KF Jr, Gheorghiade M, Bourge RC, Sueta CA, Clarke SW, Jankowski JP, Shaffer CL, McKinnis RA (1995) Acute hemodynamic effects of the prostacyclin analog 15AU81 in severe congestive heart failure. Am J Cardiol 19:26A–33A

    Article  Google Scholar 

  29. Qvigstad E, Brattelid T, Sjaastad I, Andressen KW, Krobert KA, Birkeland JA, Sejersted OM, Kaumann AJ, Skomedal T, Osnes JB, Levy FO (2005) Appearance of a ventricular 5-HT4 receptor-mediated inotropic response to serotonin in heart failure. Cardiovasc Res 65:869–878. doi:10.1016/j.cardiores.2004.11.017

    Article  PubMed  CAS  Google Scholar 

  30. Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DM, Karpen JW (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA 98:13049–13054. doi:10.1073/pnas.221381398

    Article  PubMed  CAS  Google Scholar 

  31. Richam PP (1964) Human experimentation. Code of ethics of the world medical association. Declaration of Helsinki. Br Med J 2:177. doi:10.1136/bmj.2.5402.177

    Article  Google Scholar 

  32. Richter W, Xie M, Scheitrum C, Krall J, Movsesian MA, Conti M (2011) Conserved expression and functions of PDE4 in rodent and human heart. Basic Res Cardiol 106:249–262. doi:10.1007/s00395-010-0138-8

    Article  PubMed  CAS  Google Scholar 

  33. Riise J, Nguyen CH, Hussain RI, Dahl CP, Ege MS, Osnes JB, Skomedal T, Sandnes DL, Levy FO, Krobert KA (2012) Prostanoid-mediated inotropic responses are attenuated in failing human and rat ventricular myocardium. Eur J Pharmacol doi. doi:10.1016/j.ejphar.2012.04.022

    Google Scholar 

  34. Schafer A, Fraccarollo D, Pfortsch S, Loch E, Neuser J, Vogt C, Bauersachs J (2011) Clopidogrel improves endothelial function and NO bioavailability by sensitizing adenylyl cyclase in rats with congestive heart failure. Basic Res Cardiol 106:485–494. doi:10.1007/s00395-011-0153-4

    Article  PubMed  Google Scholar 

  35. Serra W, Musiari L, Ardissino D, Gherli T, Montanari A (2011) Benefit of prostaglandin infusion in severe heart failure Preliminary clinical experience of repetitive administration. Int J Cardiol 146:10–15. doi:10.1016/j.ijcard.2008.12.173

    Article  Google Scholar 

  36. Skomedal T, Borthne K, Aass H, Geiran O, Osnes JB (1997) Comparison between alpha-1 adrenoceptor-mediated and beta adrenoceptor-mediated inotropic components elicited by norepinephrine in failing human ventricular muscle. J Pharmacol Exp Ther 280:721–729

    PubMed  CAS  Google Scholar 

  37. Sueta CA, Gheorghiade M, Adams KF Jr, Bourge RC, Murali S, Uretsky BF, Pritzker MR, McGoon MD, Butman SM, Grossman SH (1995) Safety and efficacy of epoprostenol in patients with severe congestive heart failure. Epoprostenol Multicenter Research Group. Am J Cardiol 75:34A–43A. doi:10.1016/S0002-9149(99)80381-6

    Article  PubMed  CAS  Google Scholar 

  38. Takahama H, Asanuma H, Sanada S, Fujita M, Sasaki H, Wakeno M, Kim J, Asakura M, Takashima S, Minamino T, Komamura K, Sugimachi M, Kitakaze M (2010) A histamine H2 receptor blocker ameliorates development of heart failure in dogs independently of beta-adrenergic receptor blockade. Basic Res Cardiol 105:787–794. doi:10.1007/s00395-010-0119-y

    Article  PubMed  CAS  Google Scholar 

  39. Verduyn SC, Zaremba R, van der Velden J, Stienen GJ (2007) Effects of contractile protein phosphorylation on force development in permeabilized rat cardiac myocytes. Basic Res Cardiol 102:476–487. doi:10.1007/s00395-007-0663-2

    Article  PubMed  CAS  Google Scholar 

  40. Watts VJ (2002) Molecular mechanisms for heterologous sensitization of adenylate cyclase. J Pharmacol Exp Ther 302:1–7. doi:10.1124/jpet.302.1.1

    Article  PubMed  CAS  Google Scholar 

  41. Wimmer A, Stanek B, Kubecova L, Vitovec J, Spinar J, Yilmaz N, Kos T, Hartter E, Frey B, Pacher R (1999) Effects of prostaglandin E1, dobutamine and placebo on hemodynamic, renal and neurohumoral variables in patients with advanced heart failure. Jpn Heart J 40:321–334. doi:10.1536/jhj.40.321

    Article  PubMed  CAS  Google Scholar 

  42. Zaccolo M (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 158:50–60. doi:10.1111/j.1476-5381.2009.00185.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Norwegian Council on Cardiovascular Disease, The Research Council of Norway, Stiftelsen Kristian Gerhard Jebsen, Anders Jahre’s Foundation for the Promotion of Science, The Family Blix Foundation, The Simon-Fougner-Hartmann Family Foundation, South-Eastern Norway Regional Health Authority and foundations at the University of Oslo.

Conflicts of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Olav Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riise, J., Ørstavik, Ø., Qvigstad, E. et al. Prostaglandin E1 facilitates inotropic effects of 5-HT4 serotonin receptors and β-adrenoceptors in failing human heart. Basic Res Cardiol 107, 295 (2012). https://doi.org/10.1007/s00395-012-0295-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0295-z

Keywords

Navigation