Skip to main content
Log in

Clopidogrel improves endothelial function and NO bioavailability by sensitizing adenylyl cyclase in rats with congestive heart failure

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Clopidogrel treatment in patients with coronary artery disease not only inhibits platelet activation but also improves endothelial function and nitric oxide (NO) bioavailability. Congestive heart failure (CHF) is associated with endothelial dysfunction and increased platelet activation. In rats with CHF following myocardial infarction (MI), we investigated whether treatment with clopidogrel modifies endothelial function. Eight weeks after coronary artery ligation, rats with CHF were randomized to placebo or the P2Y12 receptor antagonist clopidogrel (5 mg/kg twice daily, given by gavage) for another 2 weeks. Afterwards, endothelial function was assessed in isolated aortic rings in organ bath experiments. Acetylcholine-induced, endothelium-dependent, nitric oxide-mediated vasorelaxation was significantly attenuated in CHF rats compared to sham-operated animals, and was significantly improved by treatment with clopidogrel. Adenosine-induced vasorelaxation via adenylyl cyclase stimulation was attenuated in CHF and significantly improved by clopidogrel. Increased vasoconstriction to phenylephrine was observed in CHF, particularly evident under cyclooxygenase inhibition, but prevented by clopidogrel treatment. Vasoconstriction by the P2Y12 activator 2MeS-ADP was increased in CHF. Clopidogrel-treated CHF animals displayed enhanced phosphorylation of AKT and eNOS. In conclusion, clopidogrel improved endothelial function and NO bioavailability in heart failure. During CHF, sensitivity to P2Y12 signaling was increased leading to impaired adenylyl cyclase-mediated signaling. Chronic P2Y12-blockade with clopidogrel improved adenylyl cyclase-mediated signaling including increased AKT- and eNOS-phosphorylation contributing to improved NO-mediated vasorelaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylyl cyclase expression: role of enhanced vascular superoxide production. Circulation 100:292–298

    PubMed  CAS  Google Scholar 

  2. Bauersachs J, Galuppo P, Fraccarollo D, Christ M, Ertl G (2001) Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation 104:982–985. doi:10.1161/hc3401.095946

    Article  PubMed  CAS  Google Scholar 

  3. Bauersachs J, Schäfer A (2004) Endothelial dysfunction in heart failure: mechanisms and therapeutic approaches. Curr Vasc Pharmacol 2:115–124

    Article  PubMed  CAS  Google Scholar 

  4. Diehl P, Olivier C, Halscheid C, Helbing T, Bode C, Moser M (2010) Clopidogrel affects leukocyte dependent platelet aggregation by P2Y12 expressing leukocytes. Basic Res Cardiol 105:379–387. doi:10.1007/s00395-009-0073-8

    Article  PubMed  CAS  Google Scholar 

  5. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605. doi:10.1038/21224

    Article  PubMed  CAS  Google Scholar 

  6. Ennezat PV, Van Belle E, Asseman P, Cohen-Solal A, Evans T, LeJemtel TH (2007) Steady endothelial nitric oxide synthase expression in heart failure. Acta Cardiol 62:261–264. doi:10.2143/AC.62.3.2020815

    Article  Google Scholar 

  7. Filippa N, Sable CL, Filloux C, Hemmings B, Van Obberghen E (1999) Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 19:4989–5000

    PubMed  CAS  Google Scholar 

  8. Fischer D, Rossa S, Landmesser U, Spiekermann S, Engberding N, Hornig B, Drexler H (2005) Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. Eur Heart J 26:65–69. doi:10.1093/eurheartj/ehi001

    Article  PubMed  CAS  Google Scholar 

  9. Fleming I, Bauersachs J, Schäfer A, Scholz D, Aldershvile J, Busse R (1999) Isometric contraction induces the Ca2+-independent activation of the endothelial nitric oxide synthase. Proc Natl Acad Sci USA 96:1123–1128

    Article  PubMed  CAS  Google Scholar 

  10. Fleming I, Busse R (1999) NO: The primary EDRF. J Mol Cell Cardiol 31:5–14. doi:10.1006/jmcc.1998.0839

    Article  PubMed  CAS  Google Scholar 

  11. Fraccarollo D, Hu K, Galuppo P, Gaudron P, Ertl G (1997) Chronic endothelin receptor blockade attenuates progressive ventricular dilatation and improves cardiac function in rats with myocardial infarction. Possible involvement of myocardial endothelin system in ventricular remodeling. Circulation 96:3963–3973

    PubMed  CAS  Google Scholar 

  12. Frantz S, Adamek A, Fraccarollo D, Tillmanns J, Widder JD, Dienesch C, Schafer A, Podolskaya A, Held M, Ruetten H, Ertl G, Bauersachs J (2009) The eNOS enhancer AVE 9488: a novel cardioprotectant against ischemia reperfusion injury. Basic Res Cardiol 104:773–779. doi:10.1007/s00395-009-0041-3

    Article  PubMed  CAS  Google Scholar 

  13. Gibbs CR, Blann AD, Watson RD, Lip GY (2001) Abnormalities of hemorheological, endothelial, and platelet function in patients with chronic heart failure in sinus rhythm: effects of angiotensin-converting enzyme inhibitor and beta-blocker therapy. Circulation 103:1746–1751

    PubMed  CAS  Google Scholar 

  14. Gill RM, Braz JC, Jin N, Etgen GJ, Shen W (2007) Restoration of impaired endothelium-dependent coronary vasodilation in failing heart: role of eNOS phosphorylation and CGMP/cGK-I signaling. Am J Physiol Heart Circ Physiol 292:H2782–H2790. doi:10.1152/ajpheart.00831.2006

    Article  PubMed  CAS  Google Scholar 

  15. Guns PJ, Korda A, Crauwels HM, Van Assche T, Robaye B, Boeynaems JM, Bult H (2005) Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta. Br J Pharmacol 146:288–295. doi:10.1038/sj.bjp.0706326

    Article  PubMed  CAS  Google Scholar 

  16. Heitzer T, Rudolph V, Schwedhelm E, Karstens M, Sydow K, Ortak M, Tschentscher P, Meinertz T, Boger R, Baldus S (2006) Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease: evidence for antioxidant and antiinflammatory effects. Arterioscler Thromb Vasc Biol 26:1648–1652. doi:10.1161/01.ATV.0000225288.74170.dc

    Article  PubMed  CAS  Google Scholar 

  17. Heusch G (2009) Diastolic heart failure: a misNOmer. Basic Res Cardiol 104:465–467. doi:10.1007/s00395-009-0025-3

    Article  PubMed  Google Scholar 

  18. Heusch G (2010) Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 105:1–5. doi:10.1007/s00395-009-0074-7

    Article  PubMed  Google Scholar 

  19. Jakubowski A, Chlopicki S, Olszanecki R, Jawien J, Lomnicka M, Dupin JP, Gryglewski RJ (2005) Endothelial action of thienopyridines and thienopyrimidinones in the isolated guinea pig heart. Prostaglandins Leukot Essent Fatty Acids 72:139–145. doi:10.1016/j.plefa.2004.10.011

    Article  PubMed  CAS  Google Scholar 

  20. Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, Yasskiy A (2005) Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 111:310–314. doi:10.1161/01.CIR.0000153349.77489.CF

    Article  PubMed  Google Scholar 

  21. Leineweber K, Bohm M, Heusch G (2006) Cyclic adenosine monophosphate in acute myocardial infarction with heart failure: slayer or savior? Circulation 114:365–367. doi:10.1161/CIRCULATIONAHA.106.642132

    Article  PubMed  Google Scholar 

  22. Loh E, St John Sutton M, Wun CC (1997) Ventricular dysfunction and the risk of stroke after myocardial infarction. N Engl J Med 336:251–257. doi:10.1056/NEJM199701233360403

    Article  PubMed  CAS  Google Scholar 

  23. Lorenz M, Urban J, Engelhardt U, Baumann G, Stangl K, Stangl V (2009) Green and black tea are equally potent stimuli of NO production and vasodilation: new insights into tea ingredients involved. Basic Res Cardiol 104:100–110. doi:10.1007/s00395-008-0759-3

    Article  PubMed  CAS  Google Scholar 

  24. Mehta J, Mehta P (1979) Platelet function studies in heart disease. VI. Enhanced platelet aggregate formation activity in congestive heart failure: inhibition by sodium nitroprusside. Circulation 60:497–503

    PubMed  CAS  Google Scholar 

  25. Meyer B, Mortl D, Strecker K, Hulsmann M, Kulemann V, Neunteufl T, Pacher R, Berger R (2005) Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J Am Coll Cardiol 46:1011–1018. doi:10.1016/j.jacc.2005.04.060

    Article  PubMed  Google Scholar 

  26. Molero L, Lopez-Farre A, Mateos-Caceres PJ, Fernandez-Sanchez R, Luisa MM, Silva J, Rodriguez E, Macaya C (2005) Effect of clopidogrel on the expression of inflammatory markers in rabbit ischemic coronary artery. Br J Pharmacol 146:419–424. doi:10.1038/sj.bjp.0706340

    Article  PubMed  CAS  Google Scholar 

  27. O’Connor CM, Gurbel PA, Serebruany VL (1999) Usefulness of soluble and surface-bound P-selectin in detecting heightened platelet activity in patients with congestive heart failure. Am J Cardiol 83:1345–1349. doi:10.1016/S0002-9149(99)00098-3

    Article  PubMed  Google Scholar 

  28. Rudic RD, Brinster D, Cheng Y, Fries S, Song WL, Austin S, Coffman TM, FitzGerald GA (2005) COX-2-derived prostacyclin modulates vascular remodeling. Circ Res 96:1240–1247. doi:10.1161/01.RES.0000170888.11669.28

    Article  PubMed  CAS  Google Scholar 

  29. Schäfer A, Fraccarollo D, Eigenthaler M, Tas P, Firnschild A, Frantz S, Ertl G, Bauersachs J (2005) Rosuvastatin reduces platelet activation in heart failure: role of nitric oxide bioavailability. Arterioscler Thromb Vasc Biol 25:1071–1077. doi:10.1161/01.ATV.0000161926.43967.df

    Article  PubMed  Google Scholar 

  30. Schäfer A, Fraccarollo D, Hildemann S, Christ M, Eigenthaler M, Kobsar A, Walter U, Bauersachs J (2003) Inhibition of platelet activation in congestive heart failure by selective aldosterone receptor antagonism and ACE inhibition: Role of endothelial function and platelet VASP phosphorylation. Thromb Haemost 89:1024–1030

    PubMed  Google Scholar 

  31. Schäfer A, Fraccarollo D, Hildemann S, Tas P, Ertl G, Bauersachs J (2003) Addition of the selective aldosterone receptor antagonist eplerenone to ACE inhibition in heart failure: effect on endothelial function. Cardiovasc Res 58:655–662. doi:10.1016/S0008-6363(03)00333-X

    Article  PubMed  Google Scholar 

  32. Schäfer A, Fraccarollo D, Werner L, Bauersachs J (2010) Guanylyl cyclase activator ataciguat improves vascular function and reduces platelet activation in heart failure. Pharmacol Res 62:432–438. doi:10.1016/j.phrs.2010.06.008

    Article  PubMed  Google Scholar 

  33. Schäfer A, Fraccarollo D, Widder J, Eigenthaler M, Ertl G, Bauersachs J (2009) Inhibition of platelet activation in rats with severe congestive heart failure by a novel endothelial NO synthase transcription enhancer. Eur J Heart Fail 11:336–341. doi:10.1093/eurjhf/hfp005

    Article  PubMed  Google Scholar 

  34. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413. doi:10.1016/j.cardiores.2003.09.019

    Article  PubMed  CAS  Google Scholar 

  35. Shanker G, Kontos JL, Eckman DM, Wesley-Farrington D, Sane DC (2006) Nicotine upregulates the expression of P2Y12 on vascular cells and megakaryoblasts. J Thromb Thrombolysis 22:213–220. doi:10.1007/s11239-006-9033-4

    Article  PubMed  CAS  Google Scholar 

  36. Simon J, Filippov AK, Goransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA (2002) Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277:31390–31400. doi:10.1074/jbc.M110714200

    Article  PubMed  CAS  Google Scholar 

  37. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    PubMed  CAS  Google Scholar 

  38. Takahashi K, Ohyanagi M, Ikeoka K, Ueda A, Koida S (2005) Variations of endothelium-dependent vasoresponses in congestive heart failure. J Cardiovasc Pharmacol 45:14–21

    Article  PubMed  CAS  Google Scholar 

  39. Warnholtz A, Ostad MA, Velich N, Trautmann C, Schinzel R, Walter U, Munzel T (2008) A single loading dose of clopidogrel causes dose-dependent improvement of endothelial dysfunction in patients with stable coronary artery disease: Results of a double-blind, randomized study. Atherosclerosis 196:689–695. doi:10.1016/j.atherosclerosis.2006.12.009

    Article  PubMed  CAS  Google Scholar 

  40. Westermann D, Riad A, Richter U, Jager S, Savvatis K, Schuchardt M, Bergmann N, Tolle M, Nagorsen D, Gotthardt M, Schultheiss HP, Tschope C (2009) Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res Cardiol 104:499–509. doi:10.1007/s00395-009-0014-6

    Article  PubMed  CAS  Google Scholar 

  41. Wihlborg AK, Wang L, Braun OO, Eyjolfsson A, Gustafsson R, Gudbjartsson T, Erlinge D (2004) ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24:1810–1815. doi:10.1161/01.ATV.0000142376.30582.ed

    Article  PubMed  CAS  Google Scholar 

  42. Yang LH, Hoppensteadt D, Fareed J (1998) Modulation of vasoconstriction by clopidogrel and ticlopidine. Thromb Res 92:83–89. doi:10.1016/S0049-3848(98)00114-5

    Article  PubMed  CAS  Google Scholar 

  43. Zhang XP, Tada H, Wang Z, Hintze TH (2002) cAMP signal transduction, a potential compensatory pathway for coronary endothelial NO production after heart failure. Arterioscler Thromb Vasc Biol 22:1273–1278. doi:10.1161/01.ATV.0000025429.67378.65

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Würzburg (E-39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schäfer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2011_153_MOESM1_ESM.doc

Prostacyclin (PGI2) activates adenosine cyclase (AC), whose sensitivity towards its activators such as PGI2 or adenosine can be reduced during increased Gαi protein-coupled signaling. AC activation leads to the increase of intracellular cyclic adenosine monophosphate (cAMP). Increase in cAMP leads to phosphorylation of AKT, which subsequently increases eNOS phosphorylation and enhances nitric oxide (NO) bioavailability. ADP, via P2Y12, desensitizes AC and can, thereby, reduce the formation of NO. Chronic P2Y12 inhibition leads to decreased signaling through P2Y12 and consequently reduced AC inhibition leading to improved AKT and eNOS phosphorylation resulting in increased NO bioavailability. The ability of P2Y12 blockade to improve NO bioavailability might be stronger under conditions of enhanced ADP-mediated signaling such as congestive heart failure (DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, A., Fraccarollo, D., Pförtsch, S. et al. Clopidogrel improves endothelial function and NO bioavailability by sensitizing adenylyl cyclase in rats with congestive heart failure. Basic Res Cardiol 106, 485–494 (2011). https://doi.org/10.1007/s00395-011-0153-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0153-4

Keywords

Navigation