Skip to main content
Log in

Cardioselective nitric oxide synthase 3 gene transfer protects against myocardial reperfusion injury

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Nitric oxide modulates the severity of myocardial ischemia–reperfusion (I/R) injury. We investigated whether cardioselective nitric oxide synthase 3 (NOS3) gene transfer could confer myocardial protection against I/R injury in pigs and examined potential molecular mechanisms. I/R injury was induced by balloon occlusion of the left anterior descending artery for 45 min followed by 4 or 72 h reperfusion. Hemodynamic and pathological changes were measured in pigs in the absence (n = 11) or presence of prior intracoronary retroinfusion of human NOS3 (AdNOS3, 5 × 1010 PFU, n = 13) or control vector (AdRR5, 5 × 1010 PFU, n = 11). Retrograde NOS3 gene transfer selectively increased NOS3 expression and NO bioavailability in the area at risk (AAR) without changing endogenous NOS isoform expression. At 4 h R, LV systolic (dP/dt max) and diastolic (dP/dt min) function was better preserved in AdNOS3- than in AdRR5-injected pigs (2,539 ± 165 vs. 1,829 ± 156 mmHg/s, and −2,781 ± 340 vs. −2,062 ± 292 mmHg/s, respectively, P < 0.05 for both). Myocardial infarct size (% AAR) was significantly smaller in AdNOS3 than in control and AdRR5 and associated with a significantly greater reduction in cardiac myeloperoxidase activity, a marker of neutrophil infiltration. The latter effects were sustained at 72 h R in a subset of pigs (n = 7). In the AAR, intercellular endothelial adhesion molecule-1 expression and cardiomyocyte apoptosis were significantly lower in AdNOS3. In conclusion, single myocardial NOS3 retroinfusion attenuates I/R injury, and causes a sustained reduction in myocardial infarct size and inflammatory cell infiltration. Gene-based strategies to increase NO bioavailability may have therapeutic potential in myocardial I/R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C, Steinbeck G, Baretton G, Middeler G, Katus H, Franz WM (2000) Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 7:232–240

    Article  CAS  PubMed  Google Scholar 

  2. Bott-Flugel L, Weig HJ, Knodler M, Stadele C, Moretti A, Laugwitz KL, Seyfarth M (2005) Gene transfer of the pancaspase inhibitor P35 reduces myocardial infarct size and improves cardiac function. J Mol Med 83:526–534

    Article  PubMed  Google Scholar 

  3. Brunner F, Maier R, Andrew P, Wolkart G, Zechner R, Mayer B (2003) Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 57:55–62

    Article  CAS  PubMed  Google Scholar 

  4. Chao J, Yin H, Yao YY, Shen B, Smith RS Jr, Chao L (2006) Novel role of kallistatin in protection against myocardial ischemia-reperfusion injury by preventing apoptosis and inflammation. Hum Gene Ther 17:1201–1213

    Article  CAS  PubMed  Google Scholar 

  5. De Frutos T, Sanchez de Miguel L, Farre J, Gomez J, Romero J, Marcos-Alberca P, Nunez A, Rico L, Lopez-Farre A (2001) Expression of an endothelial-type nitric oxide synthase isoform in human neutrophils: modification by tumor necrosis factor-alpha and during acute myocardial infarction. J Am Coll Cardiol 37:800–807

    Article  PubMed  Google Scholar 

  6. Elrod JW, Calvert JW, Gundewar S, Bryan NS, Lefer DJ (2008) Nitric oxide promotes distant organ protection: evidence for an endocrine role of nitric oxide. Proc Natl Acad Sci USA 105:11430–11435

    Article  CAS  PubMed  Google Scholar 

  7. Elrod JW, Greer JJ, Bryan NS, Langston W, Szot JF, Gebregzlabher H, Janssens S, Feelisch M, Lefer DJ (2006) Cardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 26:1517–1523

    Article  CAS  PubMed  Google Scholar 

  8. Fraccarollo D, Widder JD, Galuppo P, Thum T, Tsikas D, Hoffmann M, Ruetten H, Ertl G, Bauersachs J (2008) Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118:818–827

    Article  CAS  PubMed  Google Scholar 

  9. Frantz S, Adamek A, Fraccarollo D, Tillmanns J, Widder JD, Dienesch C, Schafer A, Podolskaya A, Held M, Ruetten H, Ertl G, Bauersachs J (2009) The eNOS enhancer AVE 9488: a novel cardioprotectant against ischemia reperfusion injury. Basic Res Cardiol 104:773–779

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Dorado D, Agullo L, Sartorio CL, Ruiz-Meana M (2009) Myocardial protection against reperfusion injury: the cGMP pathway. Thromb Haemost 101:635–642

    CAS  PubMed  Google Scholar 

  11. Hall G, Hasday JD, Rogers TB (2006) Regulating the regulator: NF-kappaB signaling in heart. J Mol Cell Cardiol 41:580–591

    Article  CAS  PubMed  Google Scholar 

  12. Hamid SA, Totzeck M, Drexhage C, Thompson I, Fowkes RC, Rassaf T, Baxter GF (2009) Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res Cardiol. doi:10.1007/s00395-009-0058-7

  13. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127

    Article  CAS  PubMed  Google Scholar 

  14. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919

    Article  PubMed  Google Scholar 

  15. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87:146–152

    CAS  PubMed  Google Scholar 

  16. Janssens S, Pokreisz P, Schoonjans L, Pellens M, Vermeersch P, Tjwa M, Jans P, Scherrer-Crosbie M, Picard MH, Szelid Z, Gillijns H, Van de Werf F, Collen D, Bloch KD (2004) Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 94:1256–1262

    Article  CAS  PubMed  Google Scholar 

  17. Janssens SP, Bloch KD, Nong Z, Gerard RD, Zoldhelyi P, Collen D (1996) Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. J Clin Invest 98:317–324

    Article  CAS  PubMed  Google Scholar 

  18. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, Borow K, Dittrich H, Zsebo KM, Hajjar RJ (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 15:171–181

    Article  CAS  PubMed  Google Scholar 

  19. Jones SP, Girod WG, Palazzo AJ, Granger DN, Grisham MB, Jourd’Heuil D, Huang PL, Lefer DJ (1999) Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol 276:H1567–H1573

    CAS  PubMed  Google Scholar 

  20. Jones SP, Greer JJ, Kakkar AK, Ware PD, Turnage RH, Hicks M, van Haperen R, de Crom R, Kawashima S, Yokoyama M, Lefer DJ (2004) Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 286:H276–H282

    Article  CAS  PubMed  Google Scholar 

  21. Kupatt C, Dessy C, Hinkel R, Raake P, Daneau G, Bouzin C, Boekstegers P, Feron O (2004) Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 24:1435–1441

    Article  CAS  PubMed  Google Scholar 

  22. Kupatt C, Hinkel R, Vachenauer R, Horstkotte J, Raake P, Sandner T, Kreuzpointner R, Muller F, Dimmeler S, Feron O, Boekstegers P (2003) VEGF165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo: role of eNOS phosphorylation. FASEB J 17:705–707

    CAS  PubMed  Google Scholar 

  23. Kupatt C, Hinkel R, von Bruhl ML, Pohl T, Horstkotte J, Raake P, El Aouni C, Thein E, Dimmeler S, Feron O, Boekstegers P (2007) Endothelial nitric oxide synthase overexpression provides a functionally relevant angiogenic switch in hibernating pig myocardium. J Am Coll Cardiol 49:1575–1584

    Article  CAS  PubMed  Google Scholar 

  24. Lefer AM, Campbell B, Scalia R, Lefer DJ (1998) Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation 98:1322–1328

    CAS  PubMed  Google Scholar 

  25. Liu X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Janssens S (2007) Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 50:808–817

    Article  PubMed  Google Scholar 

  26. MacArthur PH, Shiva S, Gladwin MT (2007) Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence. J Chromatogr B Analyt Technol Biomed Life Sci 851:93–105

    Article  CAS  PubMed  Google Scholar 

  27. Maejima Y, Adachi S, Morikawa K, Ito H, Isobe M (2005) Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. J Mol Cell Cardiol 38:163–174

    Article  CAS  PubMed  Google Scholar 

  28. Mahon NG, Madden BP, Caforio AL, Elliott PM, Haven AJ, Keogh BE, Davies MJ, McKenna WJ (2002) Immunohistologic evidence of myocardial disease in apparently healthy relatives of patients with dilated cardiomyopathy. J Am Coll Cardiol 39:455–462

    Article  PubMed  Google Scholar 

  29. Matsubara H, Takaki M, Yasuhara S, Araki J, Suga H (1995) Logistic time constant of isovolumic relaxation pressure-time curve in the canine left ventricle. Better alternative to exponential time constant. Circulation 92:2318–2326

    CAS  PubMed  Google Scholar 

  30. Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ, Rosenzweig A (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335

    CAS  PubMed  Google Scholar 

  31. Miura T, Miki T (2008) Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol 103:501–513

    Article  PubMed  Google Scholar 

  32. Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ, Kass DA (2008) High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation 117:1810–1819

    Article  CAS  PubMed  Google Scholar 

  33. Mullane KM, Kraemer R, Smith B (1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14:157–167

    Article  CAS  PubMed  Google Scholar 

  34. Padilla F, Garcia-Dorado D, Agullo L, Inserte J, Paniagua A, Mirabet S, Barrabes JA, Ruiz-Meana M, Soler-Soler J (2000) L-Arginine administration prevents reperfusion-induced cardiomyocyte hypercontracture and reduces infarct size in the pig. Cardiovasc Res 46:412–420

    Article  CAS  PubMed  Google Scholar 

  35. Palazzo AJ, Jones SP, Anderson DC, Granger DN, Lefer DJ (1998) Coronary endothelial P-selectin in pathogenesis of myocardial ischemia- reperfusion injury. Am J Physiol 275:H1865–H1872

    CAS  PubMed  Google Scholar 

  36. Raake PW, Hinkel R, Muller S, Delker S, Kreuzpointner R, Kupatt C, Katus HA, Kleinschmidt JA, Boekstegers P, Muller OJ (2008) Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Ther 15:12–17

    Article  CAS  PubMed  Google Scholar 

  37. Rajagopalan S, Olin J, Deitcher S, Pieczek A, Laird J, Grossman PM, Goldman CK, McEllin K, Kelly R, Chronos N (2007) Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation 115:1234–1243

    CAS  PubMed  Google Scholar 

  38. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413

    Article  CAS  PubMed  Google Scholar 

  39. Shiva S, Gladwin MT (2009) Nitrite mediates cytoprotection after ischemia/reperfusion by modulating mitochondrial function. Basic Res Cardiol 104:113–119

    Article  CAS  PubMed  Google Scholar 

  40. Stewart DJ, Hilton JD, Arnold JM, Gregoire J, Rivard A, Archer SL, Charbonneau F, Cohen E, Curtis M, Buller CE, Mendelsohn FO, Dib N, Page P, Ducas J, Plante S, Sullivan J, Macko J, Rasmussen C, Kessler PD, Rasmussen HS (2006) Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther 13:1503–1511

    Article  CAS  PubMed  Google Scholar 

  41. Szelid Z, Sinnaeve P, Vermeersch P, Gillijns H, Pellens M, Laurysens V, Van Pelt N, Flameng W, Sergeant P, Herijgers P, Pokreisz P, Van Zonneveld AJ, Verbeken E, Collen D, Janssens S (2002) Preexisting antiadenoviral immunity and regional myocardial gene transfer: modulation by nitric oxide. Hum Gene Ther 13:2185–2195

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi SS, Omori Y, Miyazaki H, Yoshino F, Shoji H, Lee MC, Todoki K, Kamibayashi M, Murakami E (2003) Real-time monitoring of nitric oxide in ischemic myocardium using an NO-selective electrode calibrated by electron spin resonance. Life Sci 74:75–85

    Article  CAS  PubMed  Google Scholar 

  43. Verma S, Maitland A, Weisel RD, Fedak PW, Pomroy NC, Li SH, Mickle DA, Li RK, Rao V (2002) Novel cardioprotective effects of tetrahydrobiopterin after anoxia and reoxygenation: Identifying cellular targets for pharmacologic manipulation. J Thorac Cardiovasc Surg 123:1074–1083

    Article  CAS  PubMed  Google Scholar 

  44. Westermann D, Riad A, Richter U, Jager S, Savvatis K, Schuchardt M, Bergmann N, Tolle M, Nagorsen D, Gotthardt M, Schultheiss HP, Tschope C (2009) Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res Cardiol 104:499–509

    Article  CAS  PubMed  Google Scholar 

  45. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a scholarship from the K.U. Leuven and the Soros Foundation Hungary (Dr. Szelid) and by Research Fund of K.U. Leuven GOA/2007/13 (Dr. Janssens and Dr. Pokreisz). Dr. Stefan Janssens is a Principal Investigator of the Flanders Institute for Biotechnology (VIB) and holder of a chair in cardiology sponsored by Astra Zeneca.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan P. Janssens.

Additional information

Z. Szelid and P. Pokreisz contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szelid, Z., Pokreisz, P., Liu, X. et al. Cardioselective nitric oxide synthase 3 gene transfer protects against myocardial reperfusion injury. Basic Res Cardiol 105, 169–179 (2010). https://doi.org/10.1007/s00395-009-0077-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0077-4

Keywords

Navigation