Skip to main content

Advertisement

Log in

rAAV9-Mediated MEK1 Gene Expression Restores Post-conditioning Protection Against Ischemia Injury in Hypertrophic Myocardium

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

We investigated whether increased expression of activated mitogen-activated protein kinase (MAPK) kinases 1 (MEK1) restores ischemic post-conditioning (IPostC) protection in hypertrophic myocardium following ischemia/reperfusion (I/R) injury.

Methods

C57Bl/6 mice received recombinant adeno-associated virus type 9 (rAAV9)-mediated activated MEK1 gene delivery systemically, then following the induction of cardiac hypertrophy via transverse aortic constriction for 4 weeks. In a Langendorff model, hypertrophic hearts were subjected to 40 min/60 min I/R or with IPostC intervention consisting of 6 cycles of 10 s reperfusion and 10 s no-flow before a 60-min reperfusion. Hemodynamics, infarct size (IS), myocyte apoptosis and changes in expression of reperfusion injury salvage kinase (RISK) pathway were examined.

Results

rAAV9-MEK1 gene delivery led to a 4.3-fold and 2.7-fold increase in MEK1 mRNA and protein expression in the heart versus their control values. I/R resulted in a larger IS in hypertrophic than in non-hypertrophic hearts (52.3 ± 4.7% vs. 40.0 ± 2.5%, P < 0.05). IPostC mediated IS reduction in non-hypertrophic hearts (27.6 ± 2.6%, P < 0.05), while it had no significant effect in hypertrophic hearts (46.5 ± 3.1%, P=NS) compared with the IS in non-hypertrophic or hypertrophic hearts subjected to I/R injury only, respectively. Hemodynamic decline induced by I/R was preserved by IPostC in non-hypertrophic hearts but not in hypertrophic hearts. rAAV9-MEK1 gene delivery restored IPostC protection in hypertrophic hearts evidenced by reduced IS (32.0 ± 2.8% vs. 46.5 ± 3.1%) and cardiac cell apoptosis and largely preserved hemodynamic parameters. These protective effects were associated with significantly increased phosphorylation of ERK1/2 and ribosomal protein S6 kinases (p70S6K), but it had no influence on Akt and glycogen synthase kinase-3β.

Conclusion

These results demonstrated that rAAV9-mediated activated MEK1 expression restores IPostC protection in the hypertrophic heart against I/R injury through the activation of ERK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32:1454–9.

    CAS  PubMed  Google Scholar 

  2. Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114:565–71.

    CAS  PubMed  Google Scholar 

  3. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005;115:2108–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma LL, Li Y, Yin PP, Kong FJ, Guo JJ, Shi HT, et al. Hypertrophied myocardium is vulnerable to ischemia/reperfusion injury and refractory to rapamycin-induced protection due to increased oxidative/nitrative stress. Clin Sci (Lond). 2018;132:93–110.

    CAS  Google Scholar 

  5. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.

    CAS  PubMed  Google Scholar 

  6. Donato M, Evelson P, Gelpi RJ. Protecting the heart from ischemia/reperfusion injury: an update on remote ischemic preconditioning and postconditioning. Curr Opin Cardiol. 2017;32:784–90.

    PubMed  Google Scholar 

  7. Thuny F, Lairez O, Roubille F, Mewton N, Rioufol G, Sportouch C, et al. Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59:2175–81.

    PubMed  Google Scholar 

  8. Ovize M, Thibault H, Przyklenk K. Myocardial conditioning: opportunities for clinical translation. Circ Res. 2013;113:439–50.

    CAS  PubMed  Google Scholar 

  9. Hausenloy DJ, Lecour S, Yellon DM. Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal. 2011;14:893–907.

    CAS  PubMed  Google Scholar 

  10. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005;15:69–75.

    CAS  PubMed  Google Scholar 

  11. Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006;70:240–53.

    CAS  PubMed  Google Scholar 

  12. Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 2008;40:2707–19.

    CAS  PubMed  Google Scholar 

  13. Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91:776–81.

    CAS  PubMed  Google Scholar 

  14. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res. 2008;102:131–5.

    CAS  PubMed  Google Scholar 

  15. Przyklenk K, Maynard M, Darling CE, Whittaker P. Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol. 2008;51:1393–8.

    PubMed  Google Scholar 

  16. Rehni AK, Dave KR. Ameliorative potential of conditioning on ischemia-reperfusion injury in diabetes. Cond Med. 2018;1(3):105–15.

    PubMed  PubMed Central  Google Scholar 

  17. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 2014;66:1142–74.

    CAS  PubMed  Google Scholar 

  18. Hernandez-Resendiz S, Roldan FJ, Correa F, Martinez-Abundis E, Osorio-Valencia G, Ruiz-de-Jesus O, et al. Postconditioning protects against reperfusion injury in hypertensive dilated cardiomyopathy by activating MEK/ERK1/2 signaling. J Card Fail. 2013;19:135–46.

    CAS  PubMed  Google Scholar 

  19. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44:1103–10.

    PubMed  Google Scholar 

  20. Darling CE, Jiang R, Maynard M, Whittaker P, Vinten-Johansen J, Przyklenk K. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am J Physiol Heart Circ Physiol. 2005;289:H1618–26.

    CAS  PubMed  Google Scholar 

  21. Gao XM, Kiriazis H, Moore XL, Feng XH, Sheppard K, Dart A, et al. Regression of pressure overload-induced left ventricular hypertrophy in mice. Am J Physiol Heart Circ Physiol. 2005;288:H2702–7.

    CAS  PubMed  Google Scholar 

  22. Li XM, Ma YT, Yang YN, Liu F, Chen BD, Han W, et al. Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin Exp Pharmacol Physiol. 2009;36:1054–61.

    CAS  PubMed  Google Scholar 

  23. Chen H. Intron splicing-mediated expression of AAV rep and cap genes and production of AAV vectors in insect cells. Mole Ther. 2008;16:924–30.

    CAS  Google Scholar 

  24. Chen BD, He CH, Chen XC, Pan S, Liu F, Ma X, et al. Targeting transgene to the heart and liver with AAV9 by different promoters. Clin Exp Pharmacol Physiol. 2015;42:1108–17.

    CAS  PubMed  Google Scholar 

  25. Gao XM, Tsai A, Al-Sharea A, Su Y, Moore S, Han LP, et al. Inhibition of the renin-angiotensin system post myocardial infarction prevents inflammation-associated acute cardiac rupture. Cardiovasc Drugs Ther. 2017;31:145–56.

    PubMed  Google Scholar 

  26. Ruze A, Chen BD, Liu F, Chen XC, Gai MT, Li XM, et al. Macrophage migration inhibitory factor plays an essential role in ischemic preconditioning-mediated cardioprotection. Clin Sci (Lond). 2019;133:665–80.

    Google Scholar 

  27. Sutherland FJ, Shattock MJ, Baker KE, Hearse DJ. Mouse isolated perfused heart: characteristics and cautions. Clin Exp Pharmacol Physiol. 2003;30:867–78.

    CAS  PubMed  Google Scholar 

  28. van Vuuren D, Genis A, Genade S, Lochner A. Postconditioning the isolated working rat heart. Cardiovasc Drugs Ther. 2008;22:391–7.

    PubMed  Google Scholar 

  29. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152–62.

    CAS  PubMed  Google Scholar 

  30. Gao XM, Liu Y, White D, Su Y, Drew BG, Bruce CR, et al. Deletion of macrophage migration inhibitory factor protects the heart from severe ischemia-reperfusion injury: a predominant role of anti-inflammation. J Mol Cell Cardiol. 2011;50:991–9.

    CAS  PubMed  Google Scholar 

  31. Fang H, Lai NC, Gao MH, Miyanohara A, Roth DM, Tang T, et al. Comparison of adeno-associated virus serotypes and delivery methods for cardiac gene transfer. Hum Gene Ther Methods. 2012;23:234–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pacak CA, Byrne BJ. AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther. 2011;19:1582–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyagi N, Rao VP, Ricci D, Du Z, Byrne GW, Bailey KR, et al. Efficient and durable gene transfer to transplanted heart using adeno-associated virus 9 vector. J Heart Lung Transplant. 2008;27:554–60.

    PubMed  PubMed Central  Google Scholar 

  34. Piras BA, Tian Y, Xu Y, Thomas NA, O'Connor DM, French BA. Systemic injection of AAV9 carrying a periostin promoter targets gene expression to a myofibroblast-like lineage in mouse hearts after reperfused myocardial infarction. Gene Ther. 2016;23:469–78.

    CAS  PubMed  Google Scholar 

  35. Sun MH, Chen XC, Han M, Yang YN, Gao XM, Ma X, et al. Cardioprotective effects of constitutively active MEK1 against H2O2-induced apoptosis and autophagy in cardiomyocytes via the ERK1/2 signaling pathway. Biochem Biophys Res Commun. 2019;512:125–30.

    CAS  PubMed  Google Scholar 

  36. Yang YN, Ji WN, Ma YT, Li XM, Chen BD, Xiang Y, et al. Activation of the ERK1/2 pathway by the CaMEK gene via adeno-associated virus serotype 9 in cardiomyocytes. Genet Mol Res. 2012;11:4672–81.

    CAS  PubMed  Google Scholar 

  37. Dow J, Bhandari A, Simkhovich BZ, Hale SL, Kloner RA. The effect of acute versus delayed remote ischemic preconditioning on reperfusion induced ventricular arrhythmias. J Cardiovasc Electrophysiol. 2012;23:1374–83.

    PubMed  Google Scholar 

  38. Galagudza M, Kurapeev D, Minasian S, Valen G, Vaage J. Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg. 2004;25:1006–10.

    PubMed  Google Scholar 

  39. Vinten-Johansen J, Zhao ZQ, Jiang R, Zatta AJ, Dobson GP. Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. J Appl Physiol (1985). 2007;103:1441–8.

    Google Scholar 

  40. Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in Ob/Ob mice. Am J Physiol Heart Circ Physiol. 2008;295:H1580–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Penna C, Tullio F, Perrelli MG, Moro F, Abbadessa G, Piccione F, et al. Ischemia/reperfusion injury is increased and cardioprotection by a postconditioning protocol is lost as cardiac hypertrophy develops in nandrolone treated rats. Basic Res Cardiol. 2011;106:409–20.

    CAS  PubMed  Google Scholar 

  42. Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW. Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Phys Regul Integr Comp Phys. 2007;292:R920–6.

    CAS  Google Scholar 

  43. Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes. 2005;54:2360–4.

    CAS  PubMed  Google Scholar 

  44. Yang XM, Philipp S, Downey JM, Cohen MV. Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol. 2005;100:57–63.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a key project of Xinjiang jointed program (U1903212) from the National Science Technology Ministry of China, an open project (No. 2018D04030) of Key Laboratory from Science and Technology Department of Xinjiang Uygur Autonomous Region, a project grant (No. 81870272) from National Nature Science Foundation of China and a “973” Preliminary program grant (ID 2010CB535013) from the National Science Technology Ministry of China.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments and obtained funding support: X.M.G., Y.T.M. and Y.N.Y.; Performed the experiment: Y.C., F.L., X.M.G., B.D.C. and Z.X.Y.; Contributed reagents/materials/analysis: F.L., X.M.L., X.L.G., Y.H., Z.X.Y. and X.M.G.; Wrote the manuscript: Y.C., C.H.H. and X.M.G.; Revised manuscript for submission: Y.C. and X.M.G.

Corresponding authors

Correspondence to Yi-Ning Yang, Yi-Tong Ma or Xiao-Ming Gao.

Ethics declarations

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, F., Chen, BD. et al. rAAV9-Mediated MEK1 Gene Expression Restores Post-conditioning Protection Against Ischemia Injury in Hypertrophic Myocardium. Cardiovasc Drugs Ther 34, 3–14 (2020). https://doi.org/10.1007/s10557-020-06936-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-06936-8

Keywords

Navigation