Skip to main content

Advertisement

Log in

Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial KATP channels during reperfusion

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

This study tested the hypothesis that inhibition of myocardial injury and modulation of mitochondrial dysfunction by postconditioning (Postcon) after 24 h of reperfusion is associated with activation of KATP channels. Thirty dogs undergoing 60 min of ischemia and 24 h of reperfusion (R) were randomly divided into four groups: Control: no intervention at R; Postcon: three cycles of 30 s R alternating with 30 s re-occlusion were applied at R; 5-hydroxydecanoate (5-HD): the mitochondrial KATP channel blocker was infused 5 min before Postcon; HMR1098: the sarcolemmal KATP channel blocker was administered 5 min before Postcon. After 24 h of R, infarct size was smaller in Postcon relative to Control (27 ± 4%* Vs. 39 ± 2% of area at risk), consistent with a reduction in CK activity (66 ± 7* Vs. 105 ± 7 IU/g). The infarct-sparing effect of Postcon was blocked by 5-HD (48 ± 5%), but was not altered by HMR1098 (29 ± 3%*), consistent with the change in CK activity (102 ± 8 in 5-HD and 71 ± 6* IU/g in HMR1098). In H9c2 cells exposed to 8 h hypoxia and 3 h of reoxygenation, Postcon up-regulated expression of mito-KATP channel Kir6.1 protein, maintained mitochondrial membrane potential and inhibited mitochondrial permeability transition pore (mPTP) opening evidenced by preserved fluorescent TMRE and calcein staining. The protective effects were blocked by 5-HD, but not by HMR1098. These data suggest that in a clinically relevant model of ischemia-reperfusion (1) Postcon reduces infarct size and decreases CK activity after prolonged reperfusion; (2) protection by Postcon is achieved by opening mitochondrial KATP channels and inhibiting mPTP opening. *P < 0.05 Vs. Control; P < 0.05 Vs. Postcon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abas L, Bogoyevitch MA, Guppy M (2000) Mitochondrial ATP production is necessary for activation of the extracellular-signal-regulated kinases during ischaemia/reperfusion in rat myocyte-derived H9c2 cells. Biochem J 349:119–126

    Article  PubMed  CAS  Google Scholar 

  2. Akao M, Teshima Y, Marban E (2002) Antiapoptotic effect of nicorandil mediated by mitochondrial ATP-sensitive potassium channels in cultured cardiac myocytes. J Am Coll Cardiol 40:803–810

    Article  PubMed  CAS  Google Scholar 

  3. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Post-conditioning inhibits mitochondrial permeability transition. Circulation 111:194–197

    Article  PubMed  CAS  Google Scholar 

  4. Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovas Res 61:461–470

    Article  CAS  Google Scholar 

  5. Brustovetsky T, Shalbuyeva N, Brustovetsky N (2005) Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J Physiol 568:47–59

    Article  PubMed  CAS  Google Scholar 

  6. Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895–1903

    Article  PubMed  Google Scholar 

  7. Darling CE, Solari PB, Smith CS, Furman MI, Przyklenk K (2007) ‘Postconditioning’ the human heart: multiple balloon inflations during primary angioplasty may confer cardioprotection. Basic Res Cardiol 102:274–278

    Article  PubMed  Google Scholar 

  8. Downey JM, Cohen MV (2006) A really radical observation–a comment on Penna et al. Basic Res Cardiol 101:180–189

    Article  Google Scholar 

  9. Galagudza M, Kurapeev D, Minasian S, Valen G, Vaage J (2004) Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg 25:1006–1010

    Article  PubMed  Google Scholar 

  10. Gogelein H, Englert HC, Kotzan A, Hack R, Lehr KH, Seiz W, Becker RHA, Sultan E, Scholkens BA, Busch AE (2000) HMR 1098: an inhibitor of cardiac ATP-sensitive potassium channels. Cardiovasc Drug Rev 18:157–174

    CAS  Google Scholar 

  11. Gok S, Vural K, Sekuri C, Onur R, Tezcan A, Izanli A (2006) Effects of the blockade of cardiac sarcolemmal ATP-sensitive potassium channels on arrhythmias and coronary flow in ischemia-reperfusion model in isolated rat hearts. Vascul Pharmacol 44:197–205

    PubMed  CAS  Google Scholar 

  12. Gross GJ, Fryer RM (1999) Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res 84:973–979

    PubMed  CAS  Google Scholar 

  13. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res 61:372–385

    Article  PubMed  CAS  Google Scholar 

  14. Halkos ME, Kerendi F, Corvera JS, Wang NP, Kin H, Payne CS, Sun H-Y, Guyton RA, Vinten-Johansen J, Zhao ZQ (2004) Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg 78:961–969

    Article  PubMed  Google Scholar 

  15. Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452

    Article  PubMed  CAS  Google Scholar 

  16. Heinzel FR, Luo Y, Dodoni G, Boengler K, Petrat F, Di Lisa F, de Groot H, Schulz R, Heusch G (2006) Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovasc Res 71:374–382

    Article  PubMed  CAS  Google Scholar 

  17. Heusch G, Buchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356

    Article  PubMed  CAS  Google Scholar 

  18. Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT (2006) Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol 101:502–507

    Article  PubMed  Google Scholar 

  19. Jung O, Englert HC, Jung W, Gogelein H, Scholkens BA, Busch AE, Linz W (2000) The K(ATP) channel blocker HMR 1883 does not abolish the benefit of ischemic preconditioning on myocardial infarct mass in anesthetized rabbits. Naunyn Schmiedebergs Arch Pharmacol 361:445–451

    Article  PubMed  CAS  Google Scholar 

  20. Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, Zhao ZQ, Guyton RA, Headrick JP, Vinten-Johansen J (2005) Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 67:124–133

    Article  PubMed  CAS  Google Scholar 

  21. Kin H, Zhao ZQ, Sun H-Y, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62:74–85

    Article  PubMed  CAS  Google Scholar 

  22. Kloner RA, Dow J, Bhandari A (2006) Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion. J Cardiovasc Pharmacol Ther 11:55–63

    Article  PubMed  Google Scholar 

  23. Lacza Z, Snipes JA, Miller AW, Szabo C, Grover G, Busija DW (2003) Heart mitochondria contain functional ATP-dependent K+ channels. J Mol Cell Cardiol 35:1339–1347

    Article  PubMed  CAS  Google Scholar 

  24. Lascano EC, Negroni JA, del Valle HF (2002) Ischemic shortening of action potential duration as a result of KATP channel opening attenuates myocardial stunning by reducing calcium influx. Mol Cell Biochem 236:53–61

    Article  PubMed  CAS  Google Scholar 

  25. Lawrence CL, Billups B, Rodrigo GC, Standen NB (2001) The KATP channel opener diazoxide protects cardiac myocytes during metabolic inhibition without causing mitochondrial depolarization or flavoprotein oxidation. Br J Pharmacol 134:535–542

    Article  PubMed  CAS  Google Scholar 

  26. Lawrence KM, Chanalaris A, Scarabelli T, Hubank M, Pasini E, Townsend PA, Comini L, Ferrari R, Tinker A, Stephanou A, Knight RA, Latchman DS (2002) K(ATP) channel gene expression is induced by urocortin and mediates its cardioprotective effect. Circulation 106:1556–1562

    Article  PubMed  CAS  Google Scholar 

  27. Lee TM, Su SF, Tsai CC, Lee YT, Tsai CH (2000) Cardioprotective effects of 17 beta-estradiol produced by activation of mitochondrial ATP-sensitive K(+)Channels in canine hearts. J Mol Cell Cardiol 32:1147–1158

    Article  PubMed  CAS  Google Scholar 

  28. Liang BT (1998) Protein kinase C-dependent activation of KATP channel enhances adenosine-induced cardioprotection. Biochem J 336:337–343

    PubMed  CAS  Google Scholar 

  29. Light PE, Bladen C, Winkfein RJ, Walsh MP, French RJ (2000) Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels. Proc Natl Acad Sci USA 97:9058–9063

    Article  PubMed  CAS  Google Scholar 

  30. Light PE, Sabir AA, Allen BG, Walsh MP, French RJ (1996) Protein kinase C-induced changes in the stoichiometry of ATP binding activate cardiac ATP-sensitive K+ channels. A possible mechanistic link to ischemic preconditioning. Circ Res 79:399–406

    PubMed  CAS  Google Scholar 

  31. Liu Y, Ren G, O’Rourke B, Marban E, Seharaseyon J (2001) Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol Pharmacol 59:225–230

    PubMed  CAS  Google Scholar 

  32. Liu Y, Yang XM, Iliodromitis EK, Kremastinos DT, Dost T, Cohen MV, Downey JM (2008) Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol 103:54–59

    Article  PubMed  CAS  Google Scholar 

  33. Luo W, Li B, Lin G, Huang R (2007) Postconditioning in cardiac surgery for tetralogy of fallot. J Thorac Cardiovasc Surg 133:1373–1374

    Article  PubMed  Google Scholar 

  34. McCully JD, Wakiyama H, Cowan DB, Federman M, Parker RA, Levitsky S (2002) Diazoxide amelioration of myocardial injury and mitochondrial damage during cardiac surgery. Ann Thorac Surg 74:2138–2146

    Article  PubMed  Google Scholar 

  35. Miki T, Suzuki M, Shibasaki T, Uemura H, Sato T, Yamaguchi K, Koseki H, Iwanaga T, Nakaya H, Seino S (2002) Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med 8:466–472

    Article  PubMed  CAS  Google Scholar 

  36. Mykytenko J, Kerendi F, Reeves JG, Kin H, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ (2007) Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol 102:90–100

    Article  PubMed  CAS  Google Scholar 

  37. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189

    Article  PubMed  CAS  Google Scholar 

  38. Piper HM, Schafer AC (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371

    Article  PubMed  CAS  Google Scholar 

  39. Saavedra WF, Paolocci N, Kass DA (2002) Effects of cardioselective KATP channel antagonism on basal, stimulated, and ischaemic myocardial function in in vivo failing canine heart. Br J Pharmacol 135:657–662

    Article  PubMed  CAS  Google Scholar 

  40. Sanada S, Kitakaze M, Asanuma H, Harada K, Ogita H, Node K, Takashima S, Sakata Y, Asakura M, Shinozaki Y, Mori H, Kuzuya T, Hori M (2001) Role of mitochondrial and sarcolemmal K(ATP) channels in ischemic preconditioning of the canine heart. Am J Physiol Heart Circ Physiol 280:H256–H263

    PubMed  CAS  Google Scholar 

  41. Sato T, Sasaki M, Seharaseyon J, O’Rourke B, Marban E (2000) Selective pharmacological agents implicate mitochondrial, but not sarcolemmal, KATP channels in ischemic cardioprotection. Circulation 101:2418–2423

    PubMed  CAS  Google Scholar 

  42. Singh H, Hudman D, Lawrence CL, Rainbow RD, Lodwick D, Norman RI (2003) Distribution of Kir6.0 and SUR2 ATP-sensitive potassium channel subunits in isolated ventricular myocytes. J Mol Cell Cardiol 35:445–459

    Article  PubMed  CAS  Google Scholar 

  43. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit J-F, Bonnefoy E, Finet G, Andre-Fouet X, Ovize MM (2005) Postconditioning the human heart. Circulation 112:2143–2148

    Article  PubMed  Google Scholar 

  44. Sun H-Y, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol 288:H1900–H1908

    Article  PubMed  CAS  Google Scholar 

  45. Sun H-Y, Wang N-P, Halkos ME, Kerendi F, Kin H, Wang RX, Guyton RA, Zhao Z-Q (2004) Involvement of Na+/H+ exchanger in hypoxia/re-oxygenation-induced neonatal rat cardiomyocyte apoptosis. Eur J Pharmacol 486:121–131

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki M, Li RA, Miki T, Uemura H, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Ogura T, Seino S, Marban E, Nakaya H (2001) Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice. Circ Res 88:570–577

    PubMed  CAS  Google Scholar 

  47. Tanno M, Miura T, Tsuchida A, Miki T, Nishino Y, Ohnuma Y, Shimamoto K (2001) Contribution of both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels to infarct size limitation by K(ATP) channel openers: differences from preconditioning in the role of sarcolemmal K(ATP) channels. Naunyn Schmiedebergs Arch Pharmacol 364:226–232

    Article  PubMed  CAS  Google Scholar 

  48. Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, Cung TT, Bonnefoy E, Angoulvant D, Aupetit JF, Finet G, Andre-Fouet X, Macia JC, Raczka F, Rossi R, Itti R, Kirkorian G, Derumeaux G, Ovize M (2008) Long-term benefit of postconditioning. Circulation 117:1037–1044

    Article  PubMed  CAS  Google Scholar 

  49. Tsai CH, Su SF, Chou TF, Lee TM (2002) Differential effects of sarcolemmal and mitochondrial K(ATP) channels activated by 17 beta-estradiol on reperfusion arrhythmias and infarct sizes in canine hearts. J Pharmacol Exp Ther 301:234–240

    Article  PubMed  CAS  Google Scholar 

  50. Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F (2005) Postconditioning—a new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol 100:295–310

    Article  PubMed  CAS  Google Scholar 

  51. Wakiyama H, Cowan DB, Toyoda Y, Federman M, Levitsky S, McCully JD (2002) Selective opening of mitochondrial ATP-sensitive potassium channels during surgically induced myocardial ischemia decreases necrosis and apoptosis. Eur J Cardiothorac Surg 21:424–433

    Article  PubMed  Google Scholar 

  52. Yang X-M, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110

    Article  PubMed  Google Scholar 

  53. Yang XC, Liu Y, Wang LF, Cui L, Wang T, Ge YG, Wang HS, Li WM, Xu L, Ni ZH, Liu SH, Zhang L, Jia HM, Vinten-Johansen J, Zhao ZQ (2007) Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J Invasive Cardiol 19:424–430

    PubMed  Google Scholar 

  54. Yang XM, Philipp S, Downey JM, Cohen MV (2005) Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 100:57–63

    Article  PubMed  CAS  Google Scholar 

  55. Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JB, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131:1–10

    Article  PubMed  CAS  Google Scholar 

  56. Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Vinten-Johansen J (2006) Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc Res 70:315–324

    Article  PubMed  CAS  Google Scholar 

  57. Zhao Z-Q, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588

    PubMed  CAS  Google Scholar 

  58. Zhao Z-Q, Nakamura M, Wang N-P, Velez DA, Hewan-Lowe KO, Guyton RA, Vinten-Johansen J (2000) Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion. J Surg Res 94:1–12

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sara Katzmark and Susan Schmarkey for their technical contributions to this study. The authors would also like to thank Dr. Garrett J. Gross and Dr. Keith Garlid for constructive comments in the design of the study. The authors thank Aventis Pharmaceuticals, Frankfurt, Germany for providing HMR1098 for this study. This work was supported by grants from the National Institute of Health to Z-Q Zhao (HL64886) and to J. Vinten-Johansen (HL69487) as well as by funds from the Carlyle Fraser Foundation of Emory Crawford Long Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qing Zhao.

Additional information

Returned for 1. Revision: 18 October 2007 1. Revision received: 25 February 2008

Returned for 2. Revision: 10 March 2008 2. Revision received: 18 April 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mykytenko, J., Reeves, J.G., Kin, H. et al. Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial KATP channels during reperfusion. Basic Res Cardiol 103, 472–484 (2008). https://doi.org/10.1007/s00395-008-0731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0731-2

Keywords

Navigation