Skip to main content

Advertisement

Log in

Saccharomyces boulardii improves clinical and paraclinical indices in overweight/obese knee osteoarthritis patients: a randomized triple-blind placebo-controlled trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to determine the effect of the probiotic Saccharomyces boulardii (S. boulardii) in patients with knee osteoarthritis (KOA).

Methods

In this study, 70 patients with KOA were recruited via outpatient clinics between 2020 and 2021 and randomly assigned to receive probiotics or placebo supplements for 12 weeks. The primary outcome was a change in pain intensity according to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score.

Results

Sixty-three patients completed the trial. A linear mixed analysis of covariance (ANCOVA) model analysis showed that probiotic was better than placebo in decreasing the pain intensity measured by visual analogue scale (VAS) [−2.11 (−2.59, −1.62) in probiotic group and −0.90 (−1.32, −0.48) in placebo group, p = 0.002] and WOMAC pain score [−3.57 (−4.66, −2.49) in probiotic group and −1.43 (−2.33, −0.53) in placebo group, p < 0.001]. The daily intake of acetaminophen for pain management significantly decreased in the probiotic group [−267.18 (−400.47, −133.89) mg, p < 0.001] that was significantly better than placebo (p = 0.006). Probiotic significantly decreased the serum levels of high-sensitivity C-reactive protein (hs-CRP) inflammatory index [−2.72 (−3.24, −2.20) µg/ml] and malondialdehyde (MDA) oxidative stress index [−1.61 (−2.11, −1.11) nmol/ml] compared to the placebo (p = 0.002 and p < 0.001, respectively). Probiotic was better than placebo in increasing the scores of role disorder due to physical health (p = 0.023), pain (p = 0.048) and physical health (p = 0.031).

Conclusion

Probiotic S. boulardii supplementation in patients with KOA significantly improved pain intensity, some dimensions of QoL, and inflammatory and oxidative stress biomarkers with no severe side effects.

Trial registry

Registered on the Iranian clinical trial website (http://www.irct.ir: IRCT20161022030424N4) on 2019-09-02.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All the necessary data are presented herewith. However, if needed, raw data on excel format can be availed on reasonable request from the corresponding author. The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M et al (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73(7):1323–1330

    Article  PubMed  Google Scholar 

  2. Romero-Figueroa MdS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G (2023) Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infection Microbiol 13:1092118

    Article  Google Scholar 

  3. Mody GM, Woolf AD, Bearel A (2003) The global burden of musculoskeletal disorders. Business Briefing. 2003:1–5

    Google Scholar 

  4. Munukka M, Waller B, Rantalainen T, Häkkinen A, Nieminen MT, Lammentausta E et al (2016) Efficacy of progressive aquatic resistance training for tibiofemoral cartilage in postmenopausal women with mild knee osteoarthritis: a randomised controlled trial. Osteoarthritis Cartilage 24(10):1708–1717

    Article  CAS  PubMed  Google Scholar 

  5. Grotle M, Hagen KB, Natvig B, Dahl FA, Kvien TK (2008) Obesity and osteoarthritis in knee, hip and/or hand: an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet Disord 9:1–5

    Article  Google Scholar 

  6. Chisari E, Wouthuyzen-Bakker M, Friedrich AW, Parvizi J (2021) The relation between the gut microbiome and osteoarthritis: A systematic review of literature. PLoS ONE 16(12):e0261353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Collaborators GA (2022) Global, regional, and national burden of diseases and injuries for adults 70 years and older: systematic analysis for the Global Burden of Disease 2019 Study. BMJ 2022:376

    Google Scholar 

  8. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908(1):244–254

    Article  CAS  PubMed  Google Scholar 

  9. Cartier A, Côté M, Lemieux I, Pérusse L, Tremblay A, Bouchard C, Després J-P (2009) Age-related differences in inflammatory markers in men: contribution of visceral adiposity. Metabolism 58(10):1452–1458

    Article  CAS  PubMed  Google Scholar 

  10. Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC et al (2018) Obesity, metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol 9:112

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moschen AR, Molnar C, Geiger S, Graziadei I, Ebenbichler CF, Weiss H et al (2010) Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor α expression. Gut 59(9):1259–1264

    Article  CAS  PubMed  Google Scholar 

  12. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L et al (2005) Sarcopenia, obesity, and inflammation—results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am J Clin Nutr 82(2):428–434

    Article  CAS  PubMed  Google Scholar 

  13. Addison O, LaStayo PC, Dibble LE, Marcus RL (2012) Inflammation, aging, and adiposity: implications for physical therapists. J Geriatr Phys Therapy 35(2):86–94

    Article  Google Scholar 

  14. Liu L, Tian F, Li G-Y, Xu W, Xia R (2022) The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr 9:1012087

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vaiserman AM, Koliada AK, Marotta F (2017) Gut microbiota: A player in aging and a target for anti-aging intervention. Ageing Res Rev 35:36–45

    Article  CAS  PubMed  Google Scholar 

  16. De Sire R, Rizzatti G, Ingravalle F, Pizzoferrato M, Petito V, Lopetuso L et al (2018) Skeletal muscle-gut axis: emerging mechanisms of sarcopenia for intestinal and extra intestinal diseases. Minerva Gastroenterol Dietol 64(4):351–362

    PubMed  Google Scholar 

  17. Szychlinska MA, Di Rosa M, Castorina A, Mobasheri A, Musumeci G (2019) A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon. 5:1

    Article  Google Scholar 

  18. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28(8):1221–1238

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boulangé C, Neves A, Chilloux J, Nicholson J, Dumas M (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8(42):2016

    Google Scholar 

  20. Hao X, Shang X, Liu J, Chi R, Zhang J, Xu T (2021) The gut microbiota in osteoarthritis: where do we stand and what can we do? Arthritis Res Ther 23:1–11

    Article  Google Scholar 

  21. Gracey E, Vereecke L, McGovern D, Fröhling M, Schett G, Danese S et al (2020) Revisiting the gut–joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol 16(8):415–433

    Article  PubMed  Google Scholar 

  22. Hrncir T (2022) Gut microbiota dysbiosis: triggers, consequences, diagnostic and therapeutic options. MDPI 2022:578

    Google Scholar 

  23. Tripathy A, Khanna S, Padhan P, Smita S, Raghav S, Gupta B (2017) Direct recognition of LPS drive TLR4 expressing CD8+ T cell activation in patients with rheumatoid arthritis. Sci Rep 7(1):933

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Zhang Y, Yao X, Li S, Wang G, Huang Y et al (2023) Characterizations of the gut bacteriome, mycobiome, and virome in patients with osteoarthritis. Microbiol Spectrum 11(1):e01711-e1722

    Article  Google Scholar 

  25. Salminen S, Ouwehand A, Benno Y, Lee Y (1999) Probiotics: how should they be defined? Trends Food Sci Technol 10(3):107–110

    Article  CAS  Google Scholar 

  26. Bahreini-Esfahani N, Moravejolahkami AR (2020) Can synbiotic dietary pattern predict lactobacillales strains in breast milk? Breastfeed Med 15(6):387–393

    Article  PubMed  Google Scholar 

  27. Aghamohammadi D, Ayromlou H, Dolatkhah N, Jahanjoo F, Shakouri SK (2019) The effects of probiotic Saccharomyces boulardii on the mental health, quality of life, fatigue, pain, and indices of inflammation and oxidative stress in patients with multiple sclerosis: Study protocol for a double-blind randomized controlled clinical trial. Trials 20(1):1–9

    Article  CAS  Google Scholar 

  28. Sophocleous A, Azfer A, Huesa C, Stylianou E, Ralston SH (2023) Probiotics inhibit cartilage damage and progression of osteoarthritis in mice. Calcif Tissue Int 112(1):66–73

    Article  CAS  PubMed  Google Scholar 

  29. Taye I, Bradbury J, Grace S, Avila C (2020) Probiotics for pain of osteoarthritis; An N-of-1 trial of individual effects. Complement Ther Med 54:102548

    Article  PubMed  Google Scholar 

  30. Lei M, Guo C, Wang D, Zhang C, Hua L (2017) The effect of probiotic Lactobacillus casei Shirota on knee osteoarthritis: a randomised double-blind, placebo-controlled clinical trial. Benef Microbes 8(5):697–703

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Li L, Guo C, Mu D, Feng B, Zuo X, Li Y (2016) Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC Gastroenterol 16:1–11

    Article  Google Scholar 

  32. Fu J, Liu J, Wen X, Zhang G, Cai J, Qiao Z et al (2022) Unique probiotic properties and bioactive metabolites of Saccharomyces boulardii. Probiot Antimicro Proteins 2022:1–16

    Google Scholar 

  33. McFarland L (2017) Common organisms and probiotics: Saccharomyces boulardii. The microbiota in gastrointestinal pathophysiology. Elsevier, Amsterdam

    Google Scholar 

  34. Sergeev IN, Aljutaily T, Walton G, Huarte E (2020) Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 12(1):222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kellgren JH, Lawrence J (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dolatkhah N, Toopchizadeh V, Barmaki S, Salekzamani Y, Najjari A, Farshbaf-Khalili A, Dolati S (2023) The effect of an anti-inflammatory in comparison with a low caloric diet on physical and mental health in overweight and obese women with knee osteoarthritis: a randomized clinical trial. Eur J Nutr 62(2):659–672

    CAS  PubMed  Google Scholar 

  37. Chen H, Zheng X, Huang H, Liu C, Wan Q, Shang S (2019) The effects of a home-based exercise intervention on elderly patients with knee osteoarthritis: a quasi-experimental study. BMC Musculoskelet Disord 20(1):160

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bijur PE, Silver W, Gallagher EJ (2001) Reliability of the visual analog scale for measurement of acute pain. Acad Emerg Med 8(12):1153–1157

    Article  CAS  PubMed  Google Scholar 

  39. Price DD, McGrath PA, Rafii A, Buckingham B (1983) The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 17(1):45–56

    Article  PubMed  Google Scholar 

  40. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840

    CAS  PubMed  Google Scholar 

  41. Eftekhar-Sadat B, Niknejad-Hosseyni SH, Babaei-Ghazani A, Toopchizadeh V, Sadeghi H (2015) Reliability and validity of Persian version of Western Ontario and McMaster Universities Osteoarthritis index in knee osteoarthritis. J Res Clin Med 3(3):170–177

    Google Scholar 

  42. Eshaghi S-R, Ramezani MA, Shahsanaee A, Pooya A (2006) Validity and reliability of the Short Form-36 Items questionnaire as a measure of quality of life in elderly Iranian population. Am J Appl Sci 3(3):1763–1766

    Article  Google Scholar 

  43. Benzie IF, Strain J (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  44. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):715S-S725

    Article  CAS  PubMed  Google Scholar 

  45. Raharjo S, Sofos J, Schmidt G (1993) Solid-phase acid extraction improves thiobarbituric acid method to determine lipid oxidation. J Food Sci 58(4):921–924

    Article  CAS  Google Scholar 

  46. Attur M, Krasnokutsky S, Statnikov A, Samuels J, Li Z, Friese O et al (2015) Low-grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. Arthr Rheumatol 67(11):2905–2915

    Article  CAS  Google Scholar 

  47. Zabłocka A, Janusz M (2008) The two faces of reactive oxygen species. Adv Hygiene Exp Med 62:118–24

    Google Scholar 

  48. Sies H, Stahl W (1995) Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62(6):1315S-S1321

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Tao N, Wang X, Chen F, Wang M (2015) The colorants, antioxidants, and toxicants from nonenzymatic browning reactions and the impacts of dietary polyphenols on their thermal formation. Food Funct 6(2):345–355

    Article  CAS  PubMed  Google Scholar 

  50. Poljsak B (2011) Strategies for reducing or preventing the generation of oxidative stress. Oxid Med Cell Long. https://doi.org/10.1155/2011/194586

    Article  Google Scholar 

  51. Favazzo LJ, Hendesi H, Villani DA, Soniwala S, Dar Q-A, Schott EM et al (2020) The gut microbiome-joint connection: implications in osteoarthritis. Curr Opin Rheumatol 32(1):92–101

    Article  PubMed  Google Scholar 

  52. Iolascon G, Gimigliano R, Bianco M, De Sire A, Moretti A, Giusti A et al (2017) Are dietary supplements and nutraceuticals effective for musculoskeletal health and cognitive function? A scoping review. J Nutr Health Aging 21(5):527–538

    Article  CAS  PubMed  Google Scholar 

  53. Lee SH, Kwon JY, Jhun J, Jung K, Park S-H, Yang CW et al (2018) Lactobacillus acidophilus ameliorates pain and cartilage degradation in experimental osteoarthritis. Immunol Lett 203:6–14

    Article  CAS  PubMed  Google Scholar 

  54. Cho K-H, Na HS, Jhun J, Woo JS, Lee AR, Lee SY et al (2022) Lactobacillus (LA-1) and butyrate inhibit osteoarthritis by controlling autophagy and inflammatory cell death of chondrocytes. Front Immunol 13:930511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. So J-S, Song M-K, Kwon H-K, Lee C-G, Chae C-S, Sahoo A et al (2011) Lactobacillus casei enhances type II collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis. Life Sci 88(7–8):358–366

    Article  CAS  PubMed  Google Scholar 

  56. Sim B-Y, Choi H-J, Kim M-G, Jeong D-G, Lee D-G, Yoon J-M et al (2018) Effects of ID-CBT5101 in preventing and alleviating osteoarthritis symptoms in a monosodium iodoacetate-induced rat model. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1803.03032

    Article  PubMed  Google Scholar 

  57. Lin Y-Y, Chen N-F, Yang S-N, Jean Y-H, Kuo H-M, Chen P-C et al (2021) Effects of Streptococcus thermophilus on anterior cruciate ligament transection-induced early osteoarthritis in rats. Exp Therap Med 21(3):1

    Article  CAS  Google Scholar 

  58. Lyu J-L, Wang T-M, Chen Y-H, Chang S-T, Wu M-S, Lin Y-H et al (2020) Oral intake of Streptococcus thermophilus improves knee osteoarthritis degeneration: A randomized, double-blind, placebo-controlled clinical study. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03757

    Article  PubMed  PubMed Central  Google Scholar 

  59. Banjonjit S, Taweechotipatr M, Rungsiyanont S (2022) Effect of probiotic Lactobacillus paracasei on tumor necrosis factor-alpha level in gingival crevicular fluid of patients undergoing impacted third molar removal. J Oral Sci 64(3):185–189

    Article  CAS  PubMed  Google Scholar 

  60. Jensen OK, Andersen MH, Østgård RD, Andersen NT, Rolving N (2019) Probiotics for chronic low back pain with type 1 Modic changes: a randomized double-blind, placebo-controlled trial with 1-year follow-up using Lactobacillus Rhamnosis GG. Eur Spine J 28:2478–2486

    Article  PubMed  Google Scholar 

  61. Itoh H, Uchida M, Sashihara T, Ji Z-S, Li J, Tang Q et al (2011) Lactobacillus gasseri OLL2809 is effective especially on the menstrual pain and dysmenorrhea in endometriosis patients: randomized, double-blind, placebo-controlled study. Cytotechnology 63:153–161

    Article  PubMed  Google Scholar 

  62. Ghavami A, Khorvash F, Heidari Z, Khalesi S, Askari G (2021) Effect of synbiotic supplementation on migraine characteristics and inflammatory biomarkers in women with migraine: Results of a randomized controlled trial. Pharmacol Res 169:105668

    Article  CAS  PubMed  Google Scholar 

  63. Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z et al (2021) Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Front Cell Infect Microbiol 11:609722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Korotkyi O, Vovk A, Galenova T, Vovk T, Dvorschenko K, Luzza F et al (2019) Effect of probiotic on serum cytokines and matrix metalloproteinases profiles during monoiodoacetate-induced osteoarthritis in rats. Minerva Biotecnol. https://doi.org/10.23736/S1120-4826.19.02548-5

    Article  Google Scholar 

  65. Korotkyi O, Dvorshchenko K, Kot L, Vovk T, Tymoshenko M, Ostapchenko L (2020) Oxidative/antioxidant balance and matrix metalloproteinases level in the knee cartilage of rats under experimental osteoarthritis and probiotic administration. Ukrainian Biochem J 92(6):26–136

    Article  Google Scholar 

  66. Zheng HJ, Guo J, Jia Q, Huang YS, Huang W-J, Zhang W et al (2019) The effect of probiotic and synbiotic supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 142:303–313

    Article  CAS  PubMed  Google Scholar 

  67. Rajkumar H, Mahmood N, Kumar M, Varikuti SR, Challa HR, Myakala SP (2014) Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: a randomized, controlled trial. Mediators Inflamm 2014:348959

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zabriskie HA, Blumkaitis JC, Moon JM, Currier BS, Stefan R, Ratliff K et al (2020) Yeast beta-glucan supplementation downregulates markers of systemic inflammation after heated treadmill exercise. Nutrients 12(4):1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Samah S, Ramasamy K, Lim SM, Neoh CF (2016) Probiotics for the management of type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res Clin Pract 118:172–182

    Article  CAS  PubMed  Google Scholar 

  70. Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3(3):207–215

    Article  CAS  PubMed  Google Scholar 

  71. Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z et al (2023) Role of microbiota short-chain fatty acid chains in the pathogenesis of autoimmune diseases. Biomed Pharmacother 162:114620

    Article  CAS  PubMed  Google Scholar 

  72. Guido G, Ausenda G, Iascone V, Chisari E (2021) Gut permeability and osteoarthritis, towards a mechanistic understanding of the pathogenesis: a systematic review. Ann Med 53(1):2380–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. La Fata G, Weber P, Mohajeri MH (2018) Probiotics and the gut immune system: indirect regulation. Probiot Antimicrob Proteins 10:11–21

    Article  Google Scholar 

  74. Nastasi C, Fredholm S, Willerslev-Olsen A, Hansen M, Bonefeld CM, Geisler C et al (2017) Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci Rep 7(1):14516

    Article  PubMed  PubMed Central  Google Scholar 

  75. Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW, Luther J et al (2012) Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol 303:1384–1392

    Article  Google Scholar 

  76. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. https://doi.org/10.1152/physrev.00003.2008

    Article  PubMed  Google Scholar 

  77. Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D et al (2017) Antioxidant properties of probiotic bacteria. Nutrients 9(5):521

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mounir M, Ibijbijen A, Farih K, Rabetafika HN, Razafindralambo HL (2022) Synbiotics and their antioxidant properties, mechanisms, and benefits on human and animal health: a narrative review. Biomolecules 12(10):1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sureda A, Bibiloni MM, Julibert A, Bouzas C, Argelich E, Llompart I et al (2018) Adherence to the mediterranean diet and inflammatory markers. Nutrients 10(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dahan S, Segal Y, Shoenfeld Y (2017) Dietary factors in rheumatic autoimmune diseases: a recipe for therapy? Nat Rev Rheumatol 13(6):348–358

    Article  CAS  PubMed  Google Scholar 

  81. Toopchizadeh V, Aghamohammadi D, Dolatkhah N, Asef S, Rahbar M, Hashemian M (2020) Diet quality is associated with pain intensity and quality of life in a sample of patients with knee osteoarthritis: a cross-sectional study. J Res Clin Med 8(1):6

    Article  Google Scholar 

  82. Toopchizadeh V, Dolatkhah N, Aghamohammadi D, Rasouli M, Hashemian M (2020) Dietary inflammatory index is associated with pain intensity and some components of quality of life in patients with knee osteoarthritis. BMC Res Notes 13(1):1–7

    Article  Google Scholar 

  83. Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LM (2021) The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13(3):886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jamar G, Ribeiro DA, Pisani LP (2021) High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr 61(5):836–854

    Article  CAS  PubMed  Google Scholar 

  85. Sivaprakasam S, Prasad PD, Singh N (2016) Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther 164:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Most J, Tosti V, Redman LM, Fontana L (2017) Calorie restriction in humans: an update. Ageing Res Rev 39:36–45

    Article  PubMed  Google Scholar 

  87. Coras R, Murillo-Saich JD, Guma M (2020) Circulating pro-and anti-inflammatory metabolites and its potential role in rheumatoid arthritis pathogenesis. Cells 9(4):827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Choi CH, Jo SY, Park HJ, Chang SK, Byeon JS, Myung SJ (2011) A randomized, double-blind, placebo-controlled multicenter trial of saccharomyces boulardii in irritable bowel syndrome: effect on quality of life. J Clin Gastroenterol 45(8):679–683

    Article  PubMed  Google Scholar 

  89. Moludi J, Khedmatgozar H, Saiedi S, Razmi H, Alizadeh M, Ebrahimi B (2021) Probiotic supplementation improves clinical outcomes and quality of life indicators in patients with plaque psoriasis: A randomized double-blind clinical trial. Clin Nutr ESPEN 46:33–39

    Article  PubMed  Google Scholar 

  90. Moré MI, Swidsinski A (2015) Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis–a review. Clin Exp Gastroenterol 2015:237–55

    Article  Google Scholar 

  91. Martins FS, Dalmasso G, Arantes RM, Doye A, Lemichez E, Lagadec P et al (2010) Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS ONE 5(1):e8925

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chen K-H, Miyazaki T, Tsai H-F, Bennett JE (2007) The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Candida glabrata. Gene 386(1–2):63–72

    Article  CAS  PubMed  Google Scholar 

  93. Fidan I, Kalkanci A, Yesilyurt E, Yalcin B, Erdal B, Kustimur S, Imir T (2009) Effects of Saccharomyces boulardii on cytokine secretion from intraepithelial lymphocytes infected by Escherichia coli and Candida albicans. Mycoses 52(1):29–34

    Article  CAS  PubMed  Google Scholar 

  94. Schneider SM, Girard-Pipau F, Filippi J, Hébuterne X, Moyse D, Hinojosa GC et al (2005) Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World J Gastroenterol: WJG 11(39):6165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wannaprasat W, Koowatananukul C, Ekkapobyotin C, Chuanchuen R (2009) Quality analysis of commercial probiotic products for food animals. Southeast Asian J Trop Med Public Health 40(5):1103

    CAS  PubMed  Google Scholar 

  96. Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Järvinen A (2006) Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis 42(5):e35–e44

    Article  CAS  PubMed  Google Scholar 

  97. Klein SM, Elmer GW, McFarland LV, Surawicz CM, Levy RH (1993) Recovery and elimination of the biotherapeutic agent, Saccharomyces boulardii, in healthy human volunteers. Pharm Res 10:1615–1619

    Article  CAS  PubMed  Google Scholar 

  98. McFarland LV, Surawicz CM, Greenberg RN, Fekety R, Elmer GW, Moyer KA et al (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 271(24):1913–1918

    Article  CAS  PubMed  Google Scholar 

  99. Lessard M, Dupuis M, Gagnon N, Nadeau E, Matte J, Goulet J, Fairbrother J (2009) Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J Anim Sci 87(3):922–934

    Article  CAS  PubMed  Google Scholar 

  100. Thygesen JB, Glerup H, Tarp B (2012) Saccharomyces boulardii fungemia caused by treatment with a probioticum. Case Reports 2012:bcr0620114412

    Google Scholar 

  101. Appel-da-Silva MC, Narvaez GA, Perez LR, Drehmer L, Lewgoy J (2017) Saccharomyces cerevisiae var boulardii fungemia following probiotic treatment. Medical Mycol Case Rep 18:15–17

    Article  Google Scholar 

  102. Cassone M, Serra P, Mondello F, Girolamo A, Scafetti S, Pistella E, Venditti M (2003) Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol 41(11):5340–5343

    Article  PubMed  PubMed Central  Google Scholar 

  103. Aghamohammadi D, Dolatkhah N, Bakhtiari F, Eslamian F, Hashemian M (2020) Nutraceutical supplements in management of pain and disability in osteoarthritis: A systematic review and meta-analysis of randomized clinical trials. Sci Rep 10(1):20892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all contributors and the Physical Medicine and Rehabilitation Research Center academic staff who assisted us with this study. The results provided in this article were a part of the thesis by Alireza Jafari.

Funding

Funding was received from the Deputy of Research, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (NO. 62858). The funding body had no role in the design of the study, collection, analysis, interpretation of the data, or writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Dolatkhah.

Ethics declarations

Conflict of interests

All authors declare that they have no competing interests regarding the research conducted and reported in this article.

Ethics approval and consent to participate

All participants were provided written informed consent and endorsement has been acknowledged by the Ethics Committee of the Research Vice-Chancellor of Tabriz University of Medical Sciences (IR.TBZMED.REC.1398.506). Patients’ data were conserved in a secured database to keep patients’ security. The study was also registered on the Iranian clinical trial website (http://www.irct.ir: IRCT20161022030424N4).

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 99 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolatkhah, N., Jafari, A., Eslamian, F. et al. Saccharomyces boulardii improves clinical and paraclinical indices in overweight/obese knee osteoarthritis patients: a randomized triple-blind placebo-controlled trial. Eur J Nutr (2024). https://doi.org/10.1007/s00394-024-03428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00394-024-03428-5

Keywords

Navigation