Skip to main content

Advertisement

Log in

Association of serum 25-hydroxyvitamin D with the incidence of 16 cancers, cancer mortality, and all-cause mortality among individuals with metabolic syndrome: a prospective cohort study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The relationship between vitamin D levels and cancer incidence and mortality in individuals with metabolic syndrome (MetS) remains poorly explored. Herein, we aimed to determine the association between 25-hydroxyvitamin D [25(OH)D] concentrations and the risk of 16 cancer incidence types and cancer/all-cause mortality in patients with MetS.

Methods

We enrolled 97,621 participants with MetS at recruitment from the UK Biobank cohort. The exposure factor was baseline serum 25(OH)D concentrations. The associations were examined using Cox proportional hazards models, which were displayed as hazard ratios (HRs) with 95% confidence intervals (CIs).

Results

Over a median follow-up period of 10.92 years for cancer incidence outcomes, 12,137 new cancer cases were recorded. We observed that 25(OH)D concentrations were inversely related to the risk of colon, lung, and kidney cancer, and HRs (95% CI) for 25(OH)D ≥ 75.0 vs. < 25.0 nmol/L were 0.67 (0.45–0.98), 0.64 (0.45–0.91), and 0.54 (0.31–0.95), respectively. The fully adjusted model revealed a null correlation between 25(OH)D and the incidence of stomach, rectum, liver, pancreas, breast, ovary, bladder, brain, multiple myeloma, leukemia, non-Hodgkin lymphoma, esophagus, and corpus uteri cancer. Over a median follow-up period of 12.72 years for mortality outcomes, 8286 fatalities (including 3210 cancer mortalities) were documented. An “L-shaped” nonlinear dose–response correlation was detected between 25(OH)D and cancer/all-cause mortality; the respective HRs (95% CI) were 0.75 (0.64–0.89) and 0.65 (0.58–0.72).

Conclusion

These findings emphasize the importance of 25(OH)D in cancer prevention and longevity promotion among patients with MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The UK Biobank datasets are openly available by submitting a data request proposal from https://www.ukbiobank.ac.uk/ (We accessed on 9 April 2022). We are authorized to access the database through the Access Management System (AMS) (Application number: 78563).

Abbreviations

MetS:

Metabolic syndrome

25(OH)D :

25-Hydroxyvitamin D

HR:

Hazard ratio

CI:

Confidence interval

VD:

Vitamin D

CVD:

Cardiovascular disease

BP:

Blood pressure

FG:

Fasting glucose

TG:

Triglycerides

HDL-C:

High-density lipoprotein cholesterol

ICD:

International classification of diseases

TDI:

Townsend deprivation index

BMI:

Body mass index

DM:

Diabetes mellitus

IQR:

Interquartile range

RCS:

Restricted cubic spline

PAR%:

Population-attributable risk percentage

NHL:

Non-Hodgkin lymphoma

MM:

Multiple myeloma

RCT:

Randomized controlled trial

References

  1. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20(2):12. https://doi.org/10.1007/s11906-018-0812-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peiris CL, van Namen M, O’Donoghue G (2021) Education-based, lifestyle intervention programs with unsupervised exercise improve outcomes in adults with metabolic syndrome. A systematic review and meta-analysis. Rev Endocr Metab Disord 22(4):877–890. https://doi.org/10.1007/s11154-021-09644-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Micucci C, Valli D, Matacchione G, Catalano A (2016) Current perspectives between metabolic syndrome and cancer. Oncotarget 7(25):38959–38972

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maroufi NF, Pezeshgi P, Mortezania Z, Pourmohammad P, Eftekhari R, Moradzadeh M, Vahedian V, Nouri M (2020) Association between vitamin D deficiency and prevalence of metabolic syndrome in female population: a systematic review. Hormone Mole Biol Clin Investigat. https://doi.org/10.1515/hmbci-2020-0033

    Article  Google Scholar 

  5. Prasad P, Kochhar A (2016) Interplay of vitamin D and metabolic syndrome: a review. Diabet Meta Synd 10(2):105–112. https://doi.org/10.1016/j.dsx.2015.02.014

    Article  Google Scholar 

  6. Yuan S, Baron JA, Michaëlsson K, Larsson SC (2021) Serum calcium and 25-hydroxyvitamin D in relation to longevity, cardiovascular disease and cancer: a Mendelian randomization study. NPJ Genom Med 6(1):86. https://doi.org/10.1038/s41525-021-00250-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlberg C, Muñoz A (2022) An update on vitamin D signaling and cancer. Semin Cancer Biol 79:217–230. https://doi.org/10.1016/j.semcancer.2020.05.018

    Article  CAS  PubMed  Google Scholar 

  8. Zhou J, Ge X, Fan X, Wang J, Miao L, Hang D (2021) Associations of vitamin D status with colorectal cancer risk and survival. Int J Cancer 149(3):606–614. https://doi.org/10.1002/ijc.33580

    Article  CAS  PubMed  Google Scholar 

  9. Fan X, Wang J, Song M, Giovannucci EL, Ma H, Jin G, Hu Z, Shen H, Hang D (2020) Vitamin D status and risk of all-cause and cause-specific mortality in a large cohort: results from the UK biobank. J Clin Endocrinol Metab 105(10):dgaa432. https://doi.org/10.1210/clinem/dgaa432

    Article  PubMed  Google Scholar 

  10. Thomas GN, Briain OH, Bosch JA, Pilz S, Loerbroks A, Kleber ME, Fischer JE, Grammer TB, Böhm BO, März W (2012) Vitamin D levels predict all-cause and cardiovascular disease mortality in subjects with the metabolic syndrome: the Ludwigshafen risk and Cardiovascular health (LURIC) study. Diabetes Care 35(5):1158–1164. https://doi.org/10.2337/dc11-1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726):203–209. https://doi.org/10.1038/s41586-018-0579-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; and International association for the study of obesity. Circulation 120(16):1640–1645. https://doi.org/10.1161/circulationaha.109.192644

    Article  CAS  PubMed  Google Scholar 

  14. Eastwood SV, Mathur R, Atkinson M, Brophy S, Sudlow C, Flaig R, de Lusignan S, Allen N, Chaturvedi N (2016) Algorithms for the capture and adjudication of prevalent and incident diabetes in UK biobank. PLoS ONE 11(9):e0162388. https://doi.org/10.1371/journal.pone.0162388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang P, Guo D, Xu B, Huang C, Yang S, Wang W, Liu W, Deng Y, Li K, Liu D, Lin J, Wei X, Huang Y, Zhang H (2022) Association of serum 25-hydroxyvitamin D With cardiovascular outcomes and all-cause mortality in individuals with prediabetes and diabetes: results from the UK biobank prospective cohort study. Diabetes Care 45(5):1219–1229. https://doi.org/10.2337/dc21-2193

    Article  CAS  PubMed  Google Scholar 

  16. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930. https://doi.org/10.1210/jc.2011-0385

    Article  CAS  PubMed  Google Scholar 

  17. Knuppel A, Fensom GK, Watts EL, Gunter MJ, Murphy N, Papier K, Perez-Cornago A, Schmidt JA, Smith Byrne K, Travis RC, Key TJ (2020) Circulating insulin-like growth factor-I concentrations and risk of 30 cancers: prospective analyses in UK biobank. Can Res 80(18):4014–4021. https://doi.org/10.1158/0008-5472.Can-20-1281

    Article  CAS  Google Scholar 

  18. Zhang YB, Chen C, Pan XF, Guo J, Li Y, Franco OH, Liu G, Pan A (2021) Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: two prospective cohort studies. BMJ 373:n604. https://doi.org/10.1136/bmj.n604

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wan Z, Guo J, Pan A, Chen C, Liu L, Liu G (2021) Association of serum 25-Hydroxyvitamin D concentrations with all-cause and cause-specific mortality among individuals with diabetes. Diabetes Care 44(2):350–357. https://doi.org/10.2337/dc20-1485

    Article  CAS  PubMed  Google Scholar 

  20. Lin XJ, Wang CP, Liu XD, Yan KK, Li S, Bao HH, Zhao LY, Liu X (2014) Body mass index and risk of gastric cancer: a meta-analysis. Jpn J Clin Oncol 44(9):783–791. https://doi.org/10.1093/jjco/hyu082

    Article  PubMed  Google Scholar 

  21. Lourida I, Hannon E, Littlejohns TJ, Langa KM, Hyppönen E, Kuzma E, Llewellyn DJ (2019) Association of lifestyle and genetic risk with incidence of dementia. JAMA 322(5):430–437. https://doi.org/10.1001/jama.2019.9879

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pei YF, Zhang L (2021) Is the townsend deprivation index a reliable predictor of psychiatric disorders? Biol Psychiatry 89(9):839–841. https://doi.org/10.1016/j.biopsych.2021.02.006

    Article  PubMed  Google Scholar 

  23. Han H, Cao Y, Feng C, Zheng Y, Dhana K, Zhu S, Shang C, Yuan C, Zong G (2022) Association of a healthy lifestyle with all-cause and cause-specific mortality among individuals with type 2 diabetes: a prospective study in UK biobank. Diabetes Care 45(2):319–329. https://doi.org/10.2337/dc21-1512

    Article  CAS  PubMed  Google Scholar 

  24. Song Z, Yang R, Wang W, Huang N, Zhuang Z, Han Y, Qi L, Xu M, Tang YD, Huang T (2021) Association of healthy lifestyle including a healthy sleep pattern with incident type 2 diabetes mellitus among individuals with hypertension. Cardiovasc Diabetol 20(1):239. https://doi.org/10.1186/s12933-021-01434-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Melamed ML, Michos ED, Post W, Astor B (2008) 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med 168(15):1629–1637. https://doi.org/10.1001/archinte.168.15.1629

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dudenkov DV, Mara KC, Petterson TM, Maxson JA, Thacher TD (2018) Serum 25-hydroxyvitamin d values and risk of all-cause and cause-specific mortality: a population-based cohort study. Mayo Clin Proc 93(6):721–730. https://doi.org/10.1016/j.mayocp.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  27. Dai L, Liu M, Chen L (2021) Association of serum 25-Hydroxyvitamin D concentrations with all-cause and cause-specific mortality among adult patients with existing cardiovascular disease. Front Nutri 8:740855. https://doi.org/10.3389/fnut.2021.740855

    Article  CAS  Google Scholar 

  28. Lu Q, Wan Z, Guo J, Liu L, Pan A, Liu G (2021) Association between serum 25-hydroxyvitamin D concentrations and mortality among adults with prediabetes. J Clin Endocrinol Metab 106(10):e4039–e4048. https://doi.org/10.1210/clinem/dgab402

    Article  PubMed  Google Scholar 

  29. Dejaeger M, Antonio L, Bouillon R, Moors H, Wu FCW, O’Neill TW, Huhtaniemi IT, Rastrelli G, Forti G, Maggi M, Casanueva FF, Slowikowska-Hilczer J, Punab M, Gielen E, Tournoy J, Vanderschueren D (2022) Aging men with insufficient vitamin D have a higher mortality risk: no added value of its free fractions or active form. J Clin Endocrinol Metab 107(3):e1212–e1220. https://doi.org/10.1210/clinem/dgab743

    Article  PubMed  Google Scholar 

  30. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, Gibson H, Gordon D, Copeland T, D’Agostino D, Friedenberg G, Ridge C, Bubes V, Giovannucci EL, Willett WC, Buring JE (2019) Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med 380(1):33–44. https://doi.org/10.1056/NEJMoa1809944

    Article  CAS  PubMed  Google Scholar 

  31. Zittermann A, Ernst JB, Prokop S, Fuchs U, Dreier J, Kuhn J, Knabbe C, Birschmann I, Schulz U, Berthold HK, Pilz S, Gouni-Berthold I, Gummert JF, Dittrich M, Börgermann J (2017) Effect of vitamin D on all-cause mortality in heart failure (EVITA): a 3-year randomized clinical trial with 4000 IU vitamin D daily. Eur Heart J 38(29):2279–2286. https://doi.org/10.1093/eurheartj/ehx235

    Article  CAS  PubMed  Google Scholar 

  32. Stubbins RE, Hakeem A, Núñez NP (2012) Using components of the vitamin D pathway to prevent and treat colon cancer. Nutr Rev 70(12):721–729. https://doi.org/10.1111/j.1753-4887.2012.00522.x

    Article  PubMed  Google Scholar 

  33. Feng Q, Zhang H, Dong Z, Zhou Y, Ma J (2017) Circulating 25-hydroxyvitamin D and lung cancer risk and survival: a dose-response meta-analysis of prospective cohort studies. Medicine 96(45):e8613. https://doi.org/10.1097/md.0000000000008613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Darling AL, Abar L, Norat T (2016) WCRF-AICR continuous update project: systematic literature review of prospective studies on circulating 25-hydroxyvitamin D and kidney cancer risk. J Steroid Biochem Mol Biol 164:85–89. https://doi.org/10.1016/j.jsbmb.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  35. Jenab M, Bueno-de-Mesquita HB, Ferrari P, van Duijnhoven FJ, Norat T, Pischon T, Jansen EH, Slimani N, Byrnes G, Rinaldi S, Tjønneland A, Olsen A, Overvad K, Boutron-Ruault MC, Clavel-Chapelon F, Morois S, Kaaks R, Linseisen J, Boeing H, Bergmann MM, Trichopoulou A, Misirli G, Trichopoulos D, Berrino F, Vineis P, Panico S, Palli D, Tumino R, Ros MM, van Gils CH, Peeters PH, Brustad M, Lund E, Tormo MJ, Ardanaz E, Rodríguez L, Sánchez MJ, Dorronsoro M, Gonzalez CA, Hallmans G, Palmqvist R, Roddam A, Key TJ, Khaw KT, Autier P, Hainaut P, Riboli E (2010) Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations:a nested case-control study. BMJ 340:b5500. https://doi.org/10.1136/bmj.b5500

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sofianopoulou E, Kaptoge SK, Afzal S, Jiang T, Gill D, Gundersen TE, Bolton TR, Allara E, Arnold MG, Mason AM, Chung R, Pennells LAM, Shi F, Sun L, Willeit P, Forouhi NG, Langenberg C, Sharp SJ, Panico S, Engström G, Melander O, Tong TYN, Perez-Cornago A, Norberg M, Johansson I, Katzke V, Srour B, Sánchez MJ, Redondo-Sánchez D, Olsen A, Dahm CC, Overvad K, Brustad M, Skeie G, Conchi Moreno-Iribas N, Onland-Moret C, van der Schouw YT, Tsilidis KK, Heath AK, Agnoli C, Krogh V, de Boer IH, Kobylecki CJ, Çolak Y, Zittermann A, Sundström J, Welsh P, Weiderpass E, Aglago EK, Ferrari P, Clarke R, Boutron M-C, Severi G, MacDonald C, Providencia R, Masala G, Ros RZ, Jolanda Boer WM, Verschuren M, Cawthon P, Schierbeck LL, Cooper C, Schulze MB, Bergmann MM, Hannemann A, Kiechl S, Brenner H, van Schoor NM, Albertorio JR, Sacerdote C, Linneberg A, Kårhus LL, Huerta JM, Imaz L, Joergensen C, Ben-Shlomo Y, Lundqvist A, Gallacher J, Sattar N, Wood AM, Wareham NJ, Nordestgaard BG, Di Angelantonio E, Danesh J, Butterworth AS, Burgess S (2021) Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and Mendelian randomisation analyses. Lancet Diabet Endocrinol 9(12):837–846

    Article  Google Scholar 

  37. Muñoz A, Grant WB (2022) Vitamin D and cancer: an historical overview of the epidemiology and mechanisms. Nutrients. https://doi.org/10.3390/nu14071448

    Article  PubMed  PubMed Central  Google Scholar 

  38. Merke J, Milde P, Lewicka S, Hügel U, Klaus G, Mangelsdorf DJ, Haussler MR, Rauterberg EW, Ritz E (1989) Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 83(6):1903–1915. https://doi.org/10.1172/jci114097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herr C, Greulich T, Koczulla RA, Meyer S, Zakharkina T, Branscheidt M, Eschmann R, Bals R (2011) The role of vitamin D in pulmonary disease: COPD, asthma, infection, and cancer. Respir Res 12(1):31. https://doi.org/10.1186/1465-9921-12-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yue CY, Ying CM (2020) Sufficience serum vitamin D before 20 weeks of pregnancy reduces the risk of gestational diabetes mellitus. Nutr Metab 17:89. https://doi.org/10.1186/s12986-020-00509-0

    Article  CAS  Google Scholar 

  41. Zhu C, Wang Z, Cai J, Pan C, Lin S, Zhang Y, Chen Y, Leng M, He C, Zhou P, Wu C, Fang Y, Li Q, Li A, Liu S, Lai Q (2021) VDR signaling via the enzyme NAT2 inhibits colorectal cancer progression. Front Pharmacol 12:727704. https://doi.org/10.3389/fphar.2021.727704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang L, Zhou S, Guo B (2020) Vitamin D suppresses ovarian cancer growth and invasion by targeting long non-coding RNA CCAT2. Int J Mol Sci. https://doi.org/10.3390/ijms21072334

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salehi-Tabar R, Memari B, Wong H, Dimitrov V, Rochel N, White JH (2019) The tumor suppressor FBW7 and the Vitamin D receptor are mutual cofactors in protein turnover and transcriptional regulation. Mole Cancer Res MCR 17(3):709–719. https://doi.org/10.1158/1541-7786.Mcr-18-0991

    Article  CAS  Google Scholar 

  44. Liu J, Liu Y, Li H, Wei C, Mao A, Liu W, Pan G (2022) Polyphyllin D induces apoptosis and protective autophagy in breast cancer cells through JNK1-Bcl-2 pathway. J Ethnopharmacol 282:114591. https://doi.org/10.1016/j.jep.2021.114591

    Article  CAS  PubMed  Google Scholar 

  45. Wu X, Hu W, Lu L, Zhao Y, Zhou Y, Xiao Z, Zhang L, Zhang H, Li X, Li W, Wang S, Cho CH, Shen J, Li M (2019) Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta pharmaceutica Sinica B 9(2):203–219. https://doi.org/10.1016/j.apsb.2018.09.002

    Article  PubMed  Google Scholar 

  46. Markowska A, Antoszczak M, Kojs Z, Bednarek W, Markowska J, Huczyński A (2020) Role of vitamin D(3) in selected malignant neoplasms. Nutrition (Burbank, Los Angeles County, Calif) 79-80:110964. https://doi.org/10.1016/j.nut.2020.110964

  47. Bhutia SK (2022) Vitamin D in autophagy signaling for health and diseases: insights on potential mechanisms and future perspectives. J Nutri Biochem 99:108841. https://doi.org/10.1016/j.jnutbio.2021.108841

    Article  CAS  Google Scholar 

  48. Sharma K, Goehe RW, Di X, Hicks MA 2nd, Torti SV, Torti FM, Harada H, Gewirtz DA (2014) A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089. Autophagy 10(12):2346–2361. https://doi.org/10.4161/15548627.2014.993283

    Article  CAS  PubMed  Google Scholar 

  49. Fernández-Barral A, Bustamante-Madrid P, Ferrer-Mayorga G, Barbáchano A, Larriba MJ, Muñoz A (2020) Vitamin D Effects on cell differentiation and stemness in cancer. Cancers (Basel) 12(9):2413. https://doi.org/10.3390/cancers12092413

    Article  CAS  PubMed  Google Scholar 

  50. Fernandez-Garcia NI, Palmer HG, Garcia M, Gonzalez-Martin A, del Rio M, Barettino D, Volpert O, Muñoz A, Jimenez B (2005) 1alpha,25-Dihydroxyvitamin D3 regulates the expression of Id1 and Id2 genes and the angiogenic phenotype of human colon carcinoma cells. Oncogene 24(43):6533–6544. https://doi.org/10.1038/sj.onc.1208801

    Article  CAS  PubMed  Google Scholar 

  51. Vanoirbeek E, Eelen G, Verlinden L, Carmeliet G, Mathieu C, Bouillon R, O’Connor R, Xiao G, Verstuyf A (2014) PDLIM2 expression is driven by vitamin D and is involved in the pro-adhesion, and anti-migration and -invasion activity of vitamin D. Oncogene 33(15):1904–1911. https://doi.org/10.1038/onc.2013.123

    Article  CAS  PubMed  Google Scholar 

  52. Chun RF, Liu PT, Modlin RL, Adams JS, Hewison M (2014) Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol 5:151. https://doi.org/10.3389/fphys.2014.00151

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sun Q, Pan A, Hu FB, Manson JE, Rexrode KM (2012) 25-Hydroxyvitamin D levels and the risk of stroke: a prospective study and meta-analysis. Stroke 43(6):1470–1477. https://doi.org/10.1161/strokeaha.111.636910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Degerud E, Hoff R, Nygård O, Strand E, Nilsen DW, Nordrehaug JE, Midttun Ø, Ueland PM, de Vogel S, Dierkes J (2016) Cosinor modelling of seasonal variation in 25-hydroxyvitamin D concentrations in cardiovascular patients in Norway. Eur J Clin Nutr 70(4):517–522. https://doi.org/10.1038/ejcn.2015.200

    Article  CAS  PubMed  Google Scholar 

  55. Dan L, Chen X, Xie Y, Sun Y, Hesketh T, Wang X, Chen J (2022) Nonlinear association between serum 25-Hydroxyvitamin D and all-cause mortality in adults with inflammatory bowel disease in a prospective cohort study. J Nutr 152(9):2125–2134. https://doi.org/10.1093/jn/nxac148

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants and staff of the UK Biobank for their dedication and contribution to the research. We appreciate the UK Biobank for giving us the opportunity to access the database through the Access Management System.

Funding

This research was funded by the High Level Talent Research Launch Project of Hangzhou Vocational & Technical College (RCXY202242) (to E Wu). The funding sources had no role in study design; in the collection, analysis, or interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

EW: performed the statistical analysis and wrote the manuscript, J-PG and KW: provided consultation in their areas of expertise, H-QX: were responsible for technical support, TX and LT: designed the study, J-TN: revised the manuscript. All authors read and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Tian Xie, Lin Tao or Jun-Tao Ni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

The UK Biobank was approved by the Research Ethics Committees of the North West Multi-Centre (reference no. 21/NW/0157). All the study participants signed an informed consent form.

Supplementary Information

Below is the link to the electronic supplementary material.

394_2023_3169_MOESM1_ESM.pdf

Table S1. Coding of outcomes. Table S2. HRs (95% CIs) for 16 site-specific cancer incidence according to serum 25(OH)D categories. Table S3. HRs (95% CIs) of all-cause mortality according to serum 25(OH)D categories stratified by baseline characteristics. Table S4. HRs (95% CIs) for cancer mortality and all-cause mortality according to serum 25(OH)D concentrations quartiles. Table S5. HRs (95% CIs) for 16 site-specific cancer incidence according to serum 25(OH)D concentrations quartiles. Fig. S1 Cohort exclusions of the study participants. 1. Assessment of covariates. 2. Assessment of missing values (PDF 515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, E., Guo, JP., Wang, K. et al. Association of serum 25-hydroxyvitamin D with the incidence of 16 cancers, cancer mortality, and all-cause mortality among individuals with metabolic syndrome: a prospective cohort study. Eur J Nutr 62, 2581–2592 (2023). https://doi.org/10.1007/s00394-023-03169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03169-x

Keywords

Navigation