Skip to main content

Advertisement

Log in

Fine-grained investigation of the relationship between human nutrition and global DNA methylation patterns

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Nutrition is an important, modifiable, environmental factor affecting human health by modulating epigenetic processes, including DNA methylation (5mC). Numerous studies investigated the association of nutrition with global and gene-specific DNA methylation and evidences on animal models highlighted a role in DNA hydroxymethylation (5hmC) regulation. However, a more comprehensive analysis of different layers of nutrition in association with global levels of 5mC and 5hmC is lacking. We investigated the association between global levels of 5mC and 5hmC and human nutrition, through the stratification and analysis of dietary patterns into different nutritional layers: adherence to Mediterranean diet (MD), main food groups, macronutrients and micronutrients intake.

Methods

ELISA technique was used to measure global 5mC and 5hmC levels in 1080 subjects from the Moli-sani cohort. Food intake during the 12 months before enrolment was assessed using the semi-quantitative EPIC food frequency questionnaire. Complementary approaches involving both classical statistics and supervised machine learning analyses were used to investigate the associations between global 5mC and 5hmC levels and adherence to Mediterranean diet, main food groups, macronutrients and micronutrients intake.

Results

We found that global DNA methylation, but not hydroxymethylation, was associated with daily intake of zinc and vitamin B3. Random Forests algorithms predicting 5mC and 5hmC through intakes of food groups, macronutrients and micronutrients revealed a significant contribution of zinc, while vitamin B3 was reported among the most influential features.

Conclusion

We found that nutrition may affect global DNA methylation, suggesting a contribution of micronutrients previously implicated as cofactors in methylation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The data underlying this article will be shared on reasonable request to the corresponding author. The data are stored in an institutional repository (https://repository.neuromed.it) and access is restricted by the ethical approvals and the legislation of the European Union.

Code availability

Not applicable.

Abbreviations

5mC:

5-Methylcytosine

5hmC:

5‑Hydroxymethylcytosine

CVD:

Cardiovascular disease

MD:

Mediterranean diet

MDS:

Mediterranean Diet Score

OD:

Optical density

SE:

Standard error

RF:

Random forest

References

  1. Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83(3):296–321. https://doi.org/10.1139/o05-036

    Article  CAS  PubMed  Google Scholar 

  2. Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P, Schwartz J (2010) Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 21(6):819–828. https://doi.org/10.1097/EDE.0b013e3181f20457

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW (2010) DNA methylation as a biomarker for cardiovascular disease risk. PLoS ONE 5(3):e9692. https://doi.org/10.1371/journal.pone.0009692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caradonna F, Consiglio O, Luparello C, Gentile C (2020) Science and healthy meals in the world: nutritional epigenomics and nutrigenetics of the Mediterranean diet. Nutrients. https://doi.org/10.3390/nu12061748

    Article  PubMed  PubMed Central  Google Scholar 

  5. Friso S, Udali S, De Santis D, Choi SW (2017) One-carbon metabolism and epigenetics. Mol Aspects Med 54:28–36. https://doi.org/10.1016/j.mam.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  6. Kadayifci FZ, Zheng S, Pan YX (2018) Molecular mechanisms underlying the link between diet and DNA methylation. Int J Mol Sci. https://doi.org/10.3390/ijms19124055

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, Langie SAS, Koppen G, Devlieger R, Godderis L (2017) Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics 9:16. https://doi.org/10.1186/s13148-017-0321-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053. https://doi.org/10.1093/hmg/ddp353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD (2018) DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 71(6):882–895. https://doi.org/10.1016/j.molcel.2018.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3(1):21–38. https://doi.org/10.3945/an.111.000992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonaccio M, Pounis G, Cerletti C, Donati MB, Iacoviello L, de Gaetano G, Investigators M-SS (2017) Mediterranean diet, dietary polyphenols and low grade inflammation: results from the MOLI-SANI study. Br J Clin Pharmacol 83(1):107–113. https://doi.org/10.1111/bcp.12924

    Article  CAS  PubMed  Google Scholar 

  12. Shankar S, Kumar D, Srivastava RK (2013) Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 138(1):1–17. https://doi.org/10.1016/j.pharmthera.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  13. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534. https://doi.org/10.1038/nrg.2017.33

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Tollefsbol TO (2020) DNA methylation methods: global DNA methylation and methylomic analyses. Methods. https://doi.org/10.1016/j.ymeth.2020.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vryer R, Saffery R (2017) What’s in a name? Context-dependent significance of “global” methylation measures in human health and disease. Clin Epigenetics 9:2. https://doi.org/10.1186/s13148-017-0311-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferrari L, Carugno M, Bollati V (2019) Particulate matter exposure shapes DNA methylation through the lifespan. Clin Epigenetics 11(1):129. https://doi.org/10.1186/s13148-019-0726-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perng W, Rozek LS, Mora-Plazas M, Duchin O, Marin C, Forero Y, Baylin A, Villamor E (2012) Micronutrient status and global DNA methylation in school-age children. Epigenetics 7(10):1133–1141. https://doi.org/10.4161/epi.21915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang FF, Morabia A, Carroll J, Gonzalez K, Fulda K, Kaur M, Vishwanatha JK, Santella RM, Cardarelli R (2011) Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. J Nutr 141(6):1165–1171. https://doi.org/10.3945/jn.110.134536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barchitta M, Maugeri A, Magnano San Lio R, Favara G, La Rosa MC, La Mastra C, Quattrocchi A, Agodi A (2019) Dietary patterns are associated with leukocyte LINE-1 methylation in women: a cross-sectional study in Southern Italy. Nutrients. https://doi.org/10.3390/nu11081843

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shi DQ, Ali I, Tang J, Yang WC (2017) New insights into 5hmC DNA modification: generation. Distrib Funct Front Genet 8:100. https://doi.org/10.3389/fgene.2017.00100

    Article  CAS  Google Scholar 

  21. Li W, Liu M (2011) Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011:870726. https://doi.org/10.4061/2011/870726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lopez V, Fernandez AF, Fraga MF (2017) The role of 5-hydroxymethylcytosine in development, aging and age-related diseases. Ageing Res Rev 37:28–38. https://doi.org/10.1016/j.arr.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  23. Liu R, Chen L, Wang Z, Zheng X, Wang Y, Li H, Noda M, Liu J, Long J (2020) Downregulation of the DNA 5-hydroxymethylcytosine is involved in mitochondrial dysfunction and neuronal impairment in high fat diet-induced diabetic mice. Free Radic Biol Med 148:42–51. https://doi.org/10.1016/j.freeradbiomed.2019.12.042

    Article  CAS  PubMed  Google Scholar 

  24. Ciccarone F, Castelli S, Ioannilli L, Ciriolo MR (2019) High dietary fat intake affects DNA methylation/hydroxymethylation in mouse heart: epigenetic hints for obesity-related cardiac dysfunction. Mol Nutr Food Res 63(4):e1800970. https://doi.org/10.1002/mnfr.201800970

    Article  CAS  PubMed  Google Scholar 

  25. Iacoviello L, Bonanni A, Costanzo S, De Curtis A, Di Castelnuovo A, Olivieri M (2007) The Moli-sani project, a randomized, prospective cohort study in the Molise region in Italy; design, rationale and objectives. Ital J Public Health 4:110–118. https://doi.org/10.2427/5886

    Article  Google Scholar 

  26. Di Castelnuovo A, Costanzo S, Persichillo M, Olivieri M, de Curtis A, Zito F, Donati MB, de Gaetano G, Iacoviello L, Investigators M-SP (2012) Distribution of short and lifetime risks for cardiovascular disease in Italians. Eur J Prev Cardiol 19(4):723–730. https://doi.org/10.1177/1741826711410820

    Article  PubMed  Google Scholar 

  27. Bonaccio M, Di Castelnuovo A, Costanzo S, Ruggiero E, De Curtis A, Persichillo M, Tabolacci C, Facchiano F, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Moli-sani Study I (2019) Chili pepper consumption and mortality in italian adults. J Am Coll Cardiol 74(25):3139–3149. https://doi.org/10.1016/j.jacc.2019.09.068

    Article  CAS  Google Scholar 

  28. Pisani P, Faggiano F, Krogh V, Palli D, Vineis P, Berrino F (1997) Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int J Epidemiol 26(Suppl 1):S152-160

    Article  PubMed  Google Scholar 

  29. Pala V, Sieri S, Palli D, Salvini S, Berrino F, Bellegotti M, Frasca G, Tumino R, Sacerdote C, Fiorini L, Celentano E, Galasso R, Krogh V (2003) Diet in the Italian EPIC cohorts: presentation of data and methodological issues. Tumori 89(6):594–607

    Article  PubMed  Google Scholar 

  30. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348(26):2599–2608. https://doi.org/10.1056/NEJMoa025039

    Article  PubMed  Google Scholar 

  31. Malferrari G, Monferini E, DeBlasio P, Diaferia G, Saltini G, Del Vecchio E, Rossi-Bernardi L, Biunno I (2002) High-quality genomic DNA from human whole blood and mononuclear cells. Biotechniques 33(6):1228–1230. https://doi.org/10.2144/02336bm09

    Article  CAS  PubMed  Google Scholar 

  32. Team R (2020) A language and environment for statistical computing. Computing. https://doi.org/10.1890/0012-9658(2002)083[3097:CFHIWS]2.0.CO;2

    Article  Google Scholar 

  33. Zhong J, Agha G, Baccarelli AA (2016) The role of DNA methylation in cardiovascular risk and disease: methodological aspects, study design, and data analysis for epidemiological studies. Circ Res 118(1):119–131. https://doi.org/10.1161/CIRCRESAHA.115.305206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO, Jacobs DR Jr, Leon AS (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32(9 Suppl):S498-504. https://doi.org/10.1097/00005768-200009001-00009

    Article  CAS  PubMed  Google Scholar 

  35. Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer

    Book  Google Scholar 

  36. Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27(12):1135–1137. https://doi.org/10.1038/nbt1209-1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb) 95(3):221–227. https://doi.org/10.1038/sj.hdy.6800717

    Article  CAS  Google Scholar 

  38. Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, van Hijum SA (2013) Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? Brief Bioinform 14(3):315–326. https://doi.org/10.1093/bib/bbs034

    Article  PubMed  Google Scholar 

  39. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22

    Google Scholar 

  40. Janitza S, Celik E, Boulesteix A-L (2018) A computationally fast variable importance test for random forests for high-dimensional data. Adv Data Anal Classif 12(4):885–915. https://doi.org/10.1007/s11634-016-0276-4

    Article  Google Scholar 

  41. Mattei D, Pietrobelli A (2019) Micronutrients and brain development. Curr Nutr Rep 8(2):99–107. https://doi.org/10.1007/s13668-019-0268-z

    Article  CAS  PubMed  Google Scholar 

  42. Terrin G, Berni Canani R, Di Chiara M, Pietravalle A, Aleandri V, Conte F, De Curtis M (2015) Zinc in early life: a key element in the fetus and preterm neonate. Nutrients 7(12):10427–10446. https://doi.org/10.3390/nu7125542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calder PC (2020) Nutrition, immunity and COVID-19. BMJ Nutr Prev Health 3(1):74–92. https://doi.org/10.1136/bmjnph-2020-000085

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jarosz M, Olbert M, Wyszogrodzka G, Mlyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacology 25(1):11–24. https://doi.org/10.1007/s10787-017-0309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18(2):144–157

    PubMed  PubMed Central  Google Scholar 

  46. Wessels I, Haase H, Engelhardt G, Rink L, Uciechowski P (2013) Zinc deficiency induces production of the proinflammatory cytokines IL-1beta and TNFalpha in promyeloid cells via epigenetic and redox-dependent mechanisms. J Nutr Biochem 24(1):289–297. https://doi.org/10.1016/j.jnutbio.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  47. Cabrera AJ (2015) Zinc, aging, and immunosenescence: an overview. Pathobiol Aging Age Relat Dis 5:25592. https://doi.org/10.3402/pba.v5.25592

    Article  PubMed  Google Scholar 

  48. Mezzaroba L, Alfieri DF, Colado Simao AN, Vissoci Reiche EM (2019) The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74:230–241. https://doi.org/10.1016/j.neuro.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  49. Narayanan SE, Rehuman NA, Harilal S, Vincent A, Rajamma RG, Behl T, Uddin MS, Ashraf GM, Mathew B (2020) Molecular mechanism of zinc neurotoxicity in Alzheimer’s disease. Environ Sci Pollut Res Int 27(35):43542–43552. https://doi.org/10.1007/s11356-020-10477-w

    Article  CAS  PubMed  Google Scholar 

  50. Dubey P, Thakur V, Chattopadhyay M (2020) Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. https://doi.org/10.3390/nu12061864

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gac P, Czerwinska K, Macek P, Jaremkow A, Mazur G, Pawlas K, Poreba R (2020) The importance of selenium and zinc deficiency in cardiovascular disorders. Environ Toxicol Pharmacol. https://doi.org/10.1016/j.etap.2020.103553

    Article  PubMed  Google Scholar 

  52. Zhang Y, Tian Y, Zhang H, Xu B, Chen H (2020) Potential pathways of zinc deficiency-promoted tumorigenesis. Biomed Pharmacother 133:110983. https://doi.org/10.1016/j.biopha.2020.110983

    Article  CAS  PubMed  Google Scholar 

  53. Wong CP, Rinaldi NA, Ho E (2015) Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol Nutr Food Res 59(5):991–999. https://doi.org/10.1002/mnfr.201400761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. https://doi.org/10.1021/pr050361j

    Article  CAS  PubMed  Google Scholar 

  55. Brito S, Lee MG, Bin BH, Lee JS (2020) Zinc and its transporters in epigenetics. Mol Cells 43(4):323–330. https://doi.org/10.14348/molcells.2020.0026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19(2):81–92. https://doi.org/10.1038/nrg.2017.80

    Article  CAS  PubMed  Google Scholar 

  57. Ren W, Gao L, Song J (2018) Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes (Basel). https://doi.org/10.3390/genes9120620

    Article  PubMed Central  Google Scholar 

  58. Pradhan M, Esteve PO, Chin HG, Samaranayke M, Kim GD, Pradhan S (2008) CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry 47(38):10000–10009. https://doi.org/10.1021/bi8011725

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki M, Yamada T, Kihara-Negishi F, Sakurai T, Hara E, Tenen DG, Hozumi N, Oikawa T (2006) Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 25(17):2477–2488. https://doi.org/10.1038/sj.onc.1209272

    Article  CAS  PubMed  Google Scholar 

  60. Castro C, Millian NS, Garrow TA (2008) Liver betaine-homocysteine S-methyltransferase activity undergoes a redox switch at the active site zinc. Arch Biochem Biophys 472(1):26–33. https://doi.org/10.1016/j.abb.2008.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jing M, Rech L, Wu Y, Goltz D, Taylor CG, House JD (2015) Effects of zinc deficiency and zinc supplementation on homocysteine levels and related enzyme expression in rats. J Trace Elem Med Biol 30:77–82. https://doi.org/10.1016/j.jtemb.2014.10.013

    Article  CAS  PubMed  Google Scholar 

  62. Alexander J, Tinkov A, Strand TA, Alehagen U, Skalny A, Aaseth J (2020) Early nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients. https://doi.org/10.3390/nu12082358

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mossink JP (2020) Zinc as nutritional intervention and prevention measure for COVID-19 disease. BMJ Nutr Prev Health 3(1):111–117. https://doi.org/10.1136/bmjnph-2020-000095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mousavi SM, Hajishafiee M, Clark CCT, Borges do NascimentoMilajerdiAminiEsmaillzadeh IJAMRA (2020) Clinical effectiveness of zinc supplementation on the biomarkers of oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 161:105166. https://doi.org/10.1016/j.phrs.2020.105166

    Article  CAS  PubMed  Google Scholar 

  65. Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA (2020) Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res. https://doi.org/10.1007/s00011-020-01425-y

    Article  PubMed  PubMed Central  Google Scholar 

  66. Makarov MV, Trammell SAJ, Migaud ME (2019) The chemistry of the vitamin B3 metabolome. Biochem Soc Trans 47(1):131–147. https://doi.org/10.1042/BST20180420

    Article  CAS  PubMed  Google Scholar 

  67. Pissios P (2017) Nicotinamide N-methyltransferase: more than a vitamin b3 clearance enzyme. Trends Endocrinol Metab 28(5):340–353. https://doi.org/10.1016/j.tem.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mrochek JE, Jolley RL, Young DS, Turner WJ (1976) Metabolic response of humans to ingestion of nicotinic acid and nicotinamide. Clin Chem 22(11):1821–1827

    Article  CAS  PubMed  Google Scholar 

  69. Li D, Tian YJ, Guo J, Sun WP, Lun YZ, Guo M, Luo N, Cao Y, Cao JM, Gong XJ, Zhou SS (2013) Nicotinamide supplementation induces detrimental metabolic and epigenetic changes in developing rats. Br J Nutr 110(12):2156–2164. https://doi.org/10.1017/S0007114513001815

    Article  CAS  PubMed  Google Scholar 

  70. Tian YJ, Luo N, Chen NN, Lun YZ, Gu XY, Li Z, Ma Q, Zhou SS (2014) Maternal nicotinamide supplementation causes global DNA hypomethylation, uracil hypo-incorporation and gene expression changes in fetal rats. Br J Nutr 111(9):1594–1601. https://doi.org/10.1017/S0007114513004054

    Article  CAS  PubMed  Google Scholar 

  71. Titcomb TJ, Tanumihardjo SA (2019) Global concerns with B vitamin statuses: biofortification, fortification, hidden hunger, interactions, and toxicity. Compr Rev Food Sci Food Saf 18(6):1968–1984

    Article  CAS  PubMed  Google Scholar 

  72. Arpon A, Riezu-Boj JI, Milagro FI, Marti A, Razquin C, Martinez-Gonzalez MA, Corella D, Estruch R, Casas R, Fito M, Ros E, Salas-Salvado J, Martinez JA (2016) Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J Physiol Biochem 73(3):445–455. https://doi.org/10.1007/s13105-017-0552-6

    Article  CAS  PubMed  Google Scholar 

  73. Ma J, Rebholz CM, Braun KVE, Reynolds LM, Aslibekyan S, Xia R, Biligowda NG, Huan T, Liu C, Mendelson MM, Joehanes R, Hu EA, Vitolins MZ, Wood AC, Lohman K, Ochoa-Rosales C, van Meurs J, Uitterlinden A, Liu Y, Elhadad MA, Heier M, Waldenberger M, Peters A, Colicino E, Whitsel EA, Baldassari A, Gharib SA, Sotoodehnia N, Brody JA, Sitlani CM, Tanaka T, Hill WD, Corley J, Deary IJ, Zhang Y, Schottker B, Brenner H, Walker ME, Ye S, Nguyen S, Pankow J, Demerath EW, Zheng Y, Hou L, Liang L, Lichtenstein AH, Hu FB, Fornage M, Voortman T, Levy D (2020) Whole blood DNA methylation signatures of diet are associated with cardiovascular disease risk factors and all-cause mortality. Circ Genom Precis Med 13(4):e002766. https://doi.org/10.1161/CIRCGEN.119.002766

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Moli-sani study investigators: the enrolment phase of the Moli-sani Study was conducted at the Research Laboratories of the Catholic University in Campobasso (Italy), the follow up of the Moli-sani cohort is being conducted at the Department of Epidemiology and Prevention of the IRCCS Neuromed, Pozzilli, Italy. Steering Committee: Licia Iacoviello*° (Chairperson), Giovanni de Gaetano* and Maria Benedetta Donati*. Scientific secretariat: Marialaura Bonaccio*, Americo Bonanni*, Chiara Cerletti*, Simona Costanzo*, Amalia De Curtis*, Augusto Di Castelnuovo§, Francesco Gianfagna°§, Mariarosaria Persichillo*, Teresa Di Prospero* (Secretary). Safety and Ethical Committee: Jos Vermylen (Catholic Univesity, Leuven, Belgio) (Chairperson), Ignacio De Paula Carrasco (Accademia Pontificia Pro Vita, Roma, Italy), Antonio Spagnuolo (Catholic University, Roma, Italy). External Event adjudicating Committee: Deodato Assanelli (Brescia, Italy), Vincenzo Centritto (Campobasso, Italy). Baseline and follow-up data management: Simona Costanzo* (Coordinator), Marco Olivieri (Associazione Cuore Sano, Campobasso, Italy), Teresa Panzera*. Data Analysis: Augusto Di Castelnuovo§ (Coordinator), Marialaura Bonaccio*, Simona Costanzo*, Simona Esposito*, Alessandro Gialluisi*, Francesco Gianfagna°§, Emilia Ruggiero*. Biobank and biochemical laboratory: Amalia De Curtis* (Coordinator), Sara Magnacca§. Genetic laboratory: Benedetta Izzi* (Coordinator), Annalisa Marotta*, Fabrizia Noro*, Roberta Parisi*, Alfonsina Tirozzi*. Recruitment staff: Mariarosaria Persichillo* (Coordinator), Francesca Bracone*, Francesca De Lucia (Associazione Cuore Sano, Campobasso, Italy), Cristiana Mignogna*, Teresa Panzera*, Livia Rago*. Communication and Press Office: Americo Bonanni*. Regional Health Institutions: Direzione Generale per la Salute—Regione Molise; Azienda Sanitaria Regionale del Molise (ASReM, Italy); Molise Dati Spa (Campobasso, Italy); Offices of vital statistics of the Molise region. Hospitals: Presidi Ospedalieri ASReM: Ospedale A. Cardarelli – Campobasso, Ospedale F. Veneziale – Isernia, Ospedale San Timoteo—Termoli (CB), Ospedale Ss. Rosario—Venafro (IS), Ospedale Vietri – Larino (CB), Ospedale San Francesco Caracciolo—Agnone (IS); Casa di Cura Villa Maria—Campobasso; Ospedale Gemelli Molise—Campobasso; IRCCS Neuromed—Pozzilli (IS). *Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy, °Department of Medicine and Surgery, University of Insubria, Varese, Italy, §Mediterranea Cardiocentro, Napoli, Italy. Baseline Recruitment staff is available at https://www.moli-sani.org/?page_id=173.

Funding

The enrolment phase of the Moli-sani Study was supported by research grants from the Pfizer Foundation (Rome, Italy), the Italian Ministry of University and Research (MIUR, Rome, Italy)–Programma Triennale di Ricerca, Decreto no.1588 and Instrumentation Laboratory, Milan, Italy. This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no 798841 (BI). The present analyses were partially supported by the Italian Ministry of Health 2018 (Young Investigator number: GR-2018-12366528) (BI) and by Fondazione Umberto Veronesi (AG and FN).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

BI, LI and AG designed the research; FN conducted the research; AM and FS contributed to the methylation experiments; MB, SC, AT, RP, ADeC and MP provided essential materials; AG, FS, FG and SO analysed data and performed statistical analysis; FN, BI and AG wrote the paper; BI, AG, and LI had primary responsibility for final content; CC, MBD, GdG, ADiC and LI conceived the Moli-sani study; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Licia Iacoviello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The Moli-sani study complies with the Declaration of Helsinki and was approved by the Ethical Committee of the Catholic University in Rome, Italy. All participants provided written informed consent.

Consent for publication

Not applicable.

Additional information

The members of the Moli-sani Study Investigators group are mentioned in the Acknowledgements section.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noro, F., Marotta, A., Bonaccio, M. et al. Fine-grained investigation of the relationship between human nutrition and global DNA methylation patterns. Eur J Nutr 61, 1231–1243 (2022). https://doi.org/10.1007/s00394-021-02716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02716-8

Keywords

Navigation