Aguiar-Pulido V, Huang W, Suarez-Ulloa V, et al (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol Bioinform 12s1:EBO.S36436. https://doi.org/10.4137/EBO.S36436
Setting standards for producibility in gut microbiome research. Nature Research Costum Media & Zymo Research https://www.nature.com/articles/d42473-018-00136-7. Accessed 30 Mar 2020
Jones RB, Zhu X, Moan E et al (2018) Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci Rep 8:4139. https://doi.org/10.1038/s41598-018-22408-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Welch RW, Antoine J-M, Berta J-L et al (2011) Guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods. Br J Nutr 106:S3–S15. https://doi.org/10.1017/S0007114511003606
CAS
Article
PubMed
Google Scholar
Sutulic S, Orfila C, Kertész Z et al (2018) General guidelines for nutritional intervention studies on bioactive-enriched food effectiveness. Available at: https://pathway27.eu/results/pathway-27-general-guidelines-for-nutritional-intervention-studies-on-bef-effectiveness. Accessed 30 Mar 2020
Rodriguez-Mateos A, Weber T, Skene SS et al (2018) Assessing the respective contributions of dietary flavanol monomers and procyanidins in mediating cardiovascular effects in humans: randomized, controlled, double-masked intervention trial. Am J Clin Nutr 108:1229–1237. https://doi.org/10.1093/ajcn/nqy229
Article
PubMed
PubMed Central
Google Scholar
Vandeputte D, Falony G, Vieira-Silva S et al (2017) Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66:1968–1974. https://doi.org/10.1136/gutjnl-2016-313271
CAS
Article
PubMed
Google Scholar
Sibbald B, Roland M (1998) Understanding controlled trials: why are randomised controlled trials important? BMJ 316:201. https://doi.org/10.1136/bmj.316.7126.201
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmedes M, Brejnrod AD, Aadland EK et al (2019) The effect of lean-seafood and non-seafood diets on fecal metabolites and gut microbiome: results from a randomized crossover intervention study. Mol Nutr Food Res 63:1700976. https://doi.org/10.1002/mnfr.201700976
CAS
Article
Google Scholar
Beaumont M, Portune KJ, Steuer N et al (2017) Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr 106:1005–1019
CAS
Article
PubMed
Google Scholar
Salonen A, Lahti L, Salojärvi J et al (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8:2218–2230. https://doi.org/10.1038/ismej.2014.63
CAS
Article
PubMed
PubMed Central
Google Scholar
Marsaux CFM, Storcksdieck genannt Bonsmann S, Putz P, et al (2017) Scientific guidelines for the substantiation of health benefits from a (bioactive-enriched) food. Available at: https://pathway27.eu/results/pathway-27-scientific-guidelines/. Accessed 30 Mar 2020
Vandenplas Y, Berger B, Carnielli PV et al (2018) Human Milk Oligosaccharides: 2′-Fucosyllactose (2′-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients. https://doi.org/10.3390/nu10091161
Article
PubMed
PubMed Central
Google Scholar
Korpela K, Costea P, Coelho LP et al (2018) Selective maternal seeding and environment shape the human gut microbiome. Genome Res 28:561–568. https://doi.org/10.1101/gr.233940.117
CAS
Article
PubMed
PubMed Central
Google Scholar
Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107:11971–11975. https://doi.org/10.1073/pnas.1002601107
Article
PubMed
PubMed Central
Google Scholar
Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227. https://doi.org/10.1038/nature11053
CAS
Article
PubMed
PubMed Central
Google Scholar
Rigsbee L, Agans R, Paliy O et al (2011) Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 77:404–412. https://doi.org/10.1111/j.1574-6941.2011.01120.x
CAS
Article
PubMed
Google Scholar
Rajilić-Stojanović M, Heilig HGHJ, Molenaar D et al (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736–1751. https://doi.org/10.1111/j.1462-2920.2009.01900.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P (2016) The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol 18:2103–2116. https://doi.org/10.1111/1462-2920.13318
Article
PubMed
PubMed Central
Google Scholar
Swann JR, Spagou K, Lewis M et al (2013) Microbial-mammalian cometabolites dominate the age-associated urinary metabolic phenotype in taiwanese and american populations. J Proteome Res 12:3166–3180. https://doi.org/10.1021/pr4000152
CAS
Article
PubMed
Google Scholar
Healey G, Murphy R, Butts C et al (2018) Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr 119:176–189. https://doi.org/10.1017/S0007114517003440
CAS
Article
PubMed
Google Scholar
Tap J, Furet J-P, Bensaada M et al (2015) Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol 17:4954–4964. https://doi.org/10.1111/1462-2920.13006
CAS
Article
PubMed
Google Scholar
Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5:494. https://doi.org/10.3389/fmicb.2014.00494
Article
PubMed
PubMed Central
Google Scholar
Johnstone AM, Duncan G, Duthie GG et al (2011) High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93:1062–1072. https://doi.org/10.3945/ajcn.110.002188
CAS
Article
PubMed
Google Scholar
Schoeller D, Westerterp M (2017) Advances in the assessment of dietary intake. CRC Press, Boca Raton. https://www.crcpress.com/Advances-in-the-Assessment-of-Dietary-Intake/Schoeller-Westerterp/p/book/9781498749329
Bingham SA (1991) Limitations of the various methods for collecting dietary intake data. Ann Nutr Metab 35:117–127. https://doi.org/10.1159/000177635
CAS
Article
PubMed
Google Scholar
Heinzmann SS, Brown IJ, Chan Q et al (2010) Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr 92:436–443. https://doi.org/10.3945/ajcn.2010.29672
CAS
Article
PubMed
PubMed Central
Google Scholar
Brennan L (2017) Metabolomics: a tool to aid dietary assessment in nutrition. Curr Opin Food Sci 16:96–99. https://doi.org/10.1016/j.cofs.2017.09.003
Article
Google Scholar
Brouwer-Brolsma EM, Brennan L, Drevon CA et al (2017) Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the food biomarker alliance. Proc Nutr Soc 76:619–627. https://doi.org/10.1017/S0029665117003949
Article
PubMed
Google Scholar
Cade JE, Warthon-Medina M, Albar S et al (2017) DIET@NET: Best Practice Guidelines for dietary assessment in health research. BMC Med 15:202. https://doi.org/10.1186/s12916-017-0962-x
Article
PubMed
PubMed Central
Google Scholar
Santos-Marcos JA, Haro C, Vega-Rojas A et al (2019) Sex differences in the gut microbiota as potential determinants of gender predisposition to disease. Mol Nutr Food Res 63:1800870. https://doi.org/10.1002/mnfr.201800870
CAS
Article
Google Scholar
Borgo F, Garbossa S, Riva A et al (2018) Body Mass Index and Sex affect diverse microbial niches within the gut. Front Microbiol 9:213. https://doi.org/10.3389/fmicb.2018.00213
Article
PubMed
PubMed Central
Google Scholar
Barrea L, Annunziata G, Muscogiuri G et al (2019) Trimethylamine N-oxide, Mediterranean diet, and nutrition in healthy, normal-weight adults: also a matter of sex? Nutrition 62:7–17. https://doi.org/10.1016/j.nut.2018.11.015
CAS
Article
PubMed
Google Scholar
Badri NW, Flatt SW, Barkai HS et al (2018) Insulin resistance improves more in women than in men in association with a weight loss intervention. J Obes Weight Loss Ther 8:365. https://doi.org/10.4172/2165-7904.1000365
Article
PubMed
PubMed Central
Google Scholar
Raziani F, Ebrahimi P, Engelsen SB et al (2018) Consumption of regular-fat vs reduced-fat cheese reveals gender-specific changes in LDL particle size - a randomized controlled trial. Nutr Metab (Lond) 15:61. https://doi.org/10.1186/s12986-018-0300-0
CAS
Article
Google Scholar
Rizzetto L, Fava F, Tuohy KM, Selmi C (2018) Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex. J Autoimmun 92:12–34. https://doi.org/10.1016/j.jaut.2018.05.008
CAS
Article
PubMed
Google Scholar
Barton W, Penney NC, Cronin O et al (2017) The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 67(4):625–633. https://doi.org/10.1136/gutjnl-2016-313627
CAS
Article
PubMed
Google Scholar
Thaiss CA, Zeevi D, Levy M et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–529. https://doi.org/10.1016/j.cell.2014.09.048
CAS
Article
PubMed
Google Scholar
Salonen A, Nikkilä J, Jalanka-Tuovinen J et al (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 81:127–134. https://doi.org/10.1016/j.mimet.2010.02.007
CAS
Article
PubMed
Google Scholar
Raymond F, Ouameur AA, Déraspe M et al (2016) The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J 10:707–720. https://doi.org/10.1038/ismej.2015.148
CAS
Article
PubMed
Google Scholar
Truong DT, Tett A, Pasolli E et al (2017) Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 27:626–638. https://doi.org/10.1101/gr.216242.116
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferretti P, Pasolli E, Tett A et al (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–145.e5. https://doi.org/10.1016/j.chom.2018.06.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Sjögren YM, Jenmalm MC, Böttcher MF et al (2009) Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 39:518–526. https://doi.org/10.1111/j.1365-2222.2008.03156.x
Article
PubMed
Google Scholar
Song SJ, Lauber C, Costello EK et al (2013) Cohabiting family members share microbiota with one another and with their dogs. Elife 2:e00458. https://doi.org/10.7554/eLife.00458
Article
PubMed
PubMed Central
Google Scholar
Tun HM, Konya T, Takaro TK et al (2017) Exposure to household furry pets influences the gut microbiota of infants at 3–4 months following various birth scenarios. Microbiome 5:40. https://doi.org/10.1186/s40168-017-0254-x
Article
PubMed
PubMed Central
Google Scholar
EFSA Panel on Dietetic Products N and A (NDA) (2016) Guidance on the scientific requirements for health claims related to the immune system, the gastrointestinal tract and defence against pathogenic microorganisms. EFSA J 14:4369. https://doi.org/10.2903/j.efsa.2016.4369
CAS
Article
Google Scholar
EFSA (2011) Outcome of a public consultation on the draft opinion of the EFSA Panel on dietetic products, nutrition, and allergies (NDA) on a guidance on the scientific requirements for health claims related to gut and immune function. EFSA Support Publ 8:136E. https://doi.org/10.2903/sp.efsa.2011.EN-136
Article
Google Scholar
EFSA Panel on Dietetic Products N and A (NDA) (2011) Guidance on the scientific requirements for health claims related to gut and immune function. EFSA J 9:1984. https://doi.org/10.2903/j.efsa.2011.1984
Article
Google Scholar
Vangay P, Johnson AJ, Ward TL et al (2018) US immigration westernizes the human gut microbiome. Cell 175:962–972.e10. https://doi.org/10.1016/j.cell.2018.10.029
CAS
Article
PubMed
PubMed Central
Google Scholar
Food and Agriculture Organization of the United Nations, World Health Organisation (2006) Probiotics in food : health and nutritional properties and guidelines for evaluation. FAO food and nutrition paper, 85 ISSN 0254–4725. Rome. http://www.fao.org/3/a-a0512e.pdf
Hill C, Guarner F, Reid G et al (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66
Article
PubMed
Google Scholar
EFSA Panel on Dietetic Products N and A (NDA) (2016) General scientific guidance for stakeholders on health claim applications. EFSA J 14:4367. https://doi.org/10.2903/j.efsa.2016.4367
CAS
Article
Google Scholar
Whorwell PJ, Altringer L, Morel J et al (2006) Efficacy of an Encapsulated Probiotic Bifidobacterium infantis 35624 in Women with Irritable Bowel Syndrome. Am J Gastroenterol 101:aid2006294. https://doi.org/10.1111/j.1572-0241.2006.00734.x
Article
Google Scholar
Plovier H, Everard A, Druart C et al (2016) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107. https://doi.org/10.1038/nm.4236
CAS
Article
PubMed
Google Scholar
Gibson GR, Hutkins R, Sanders ME et al (2017) Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Amp Hepatol 14:491. https://doi.org/10.1038/nrgastro.2017.75
Article
Google Scholar
Commission Directive 2008/100/EC of 28 October 2008 amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:285:0009:0012:EN:PDF
McCleary BV, DeVries JW, Rader JI et al (2010) Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study. J AOAC Int 93:221–233
CAS
Article
PubMed
Google Scholar
Hasselwander O, DiCosimo R, You Z et al (2017) Development of dietary soluble fibres by enzymatic synthesis and assessment of their digestibility in in vitro, animal and randomised clinical trial models. Int J Food Sci Nutr 68(7):849–864. https://doi.org/10.1080/09637486.2017.1295027
CAS
Article
PubMed
Google Scholar
Rowland I, Gibson G, Heinken A et al (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57:1–24. https://doi.org/10.1007/s00394-017-1445-8
CAS
Article
PubMed
Google Scholar
González-Sarrías A, Espín JC, Tomás-Barberán FA (2017) Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci Technol 69:281–288. https://doi.org/10.1016/j.tifs.2017.07.010
CAS
Article
Google Scholar
Pérez-Jiménez J, Díaz-Rubio ME, Saura-Calixto F (2014) Chapter 10—non-extractable polyphenols in plant foods: nature, isolation, and analysis. In: Watson RRBT-P in P (ed). Academic Press, San Diego, pp 203–218
Arranz S, Silván JM, Saura-Calixto F (2010) Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: A study on the Spanish diet. Mol Nutr Food Res 54:1646–1658. https://doi.org/10.1002/mnfr.200900580
CAS
Article
PubMed
Google Scholar
Verma B, Hucl P, Chibbar R (2009) Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chem 116(4):947–954. https://doi.org/10.1016/j.foodchem.2009.03.060
CAS
Article
Google Scholar
Sloan TJ, Jalanka J, Major GAD et al (2018) A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS ONE 13:e0201410. https://doi.org/10.1371/journal.pone.0201410
CAS
Article
PubMed
PubMed Central
Google Scholar
Chassard C, Delmas E, Robert C, Bernalier-Donadille A (2010) The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol Ecol 74:205–213. https://doi.org/10.1111/j.1574-6941.2010.00941.x
CAS
Article
PubMed
Google Scholar
Vandeputte D, Tito RY, Vanleeuwen R et al (2017) Practical considerations for large-scale gut microbiome studies. FEMS Microbiol Rev 41:S154–S167. https://doi.org/10.1093/femsre/fux027
Article
PubMed
PubMed Central
Google Scholar
Wierzbicka R, Zamaratskaia G, Kamal-Eldin A, Landberg R (2017) Novel urinary alkylresorcinol metabolites as biomarkers of whole grain intake in free-living Swedish adults. Mol Nutr Food Res 61:1700015. https://doi.org/10.1002/mnfr.201700015
CAS
Article
Google Scholar
Harder H, Tetens I, Let MB, Meyer ABS (2004) Rye bran bread intake elevates urinary excretion of ferulic acid in humans, but does not affect the susceptibility of LDL to oxidation ex vivo. Eur J Nutr 43:230–236. https://doi.org/10.1007/s00394-004-0463-5
CAS
Article
PubMed
Google Scholar
Vitaglione P, Mennella I, Ferracane R et al (2014) Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr 101:251–261. https://doi.org/10.3945/ajcn.114.088120
CAS
Article
PubMed
Google Scholar
Tomás-Barberán F, Selma M, Espín JC (2016) Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 19(6):471–476. https://doi.org/10.1097/MCO.0000000000000314
CAS
Article
PubMed
Google Scholar
Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579. https://doi.org/10.1073/pnas.87.12.4576
CAS
Article
PubMed
PubMed Central
Google Scholar
Boers SA, Jansen R, Hays JP (2019) Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis 38:1059–1070. https://doi.org/10.1007/s10096-019-03520-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489:250. https://doi.org/10.1038/nature11553
CAS
Article
PubMed
PubMed Central
Google Scholar
Chassaing B, Koren O, Goodrich JK et al (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519:92. https://doi.org/10.1038/nature14232
CAS
Article
PubMed
PubMed Central
Google Scholar
Kassinen A, Krogius-Kurikka L, Mäkivuokko H et al (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33. https://doi.org/10.1053/j.gastro.2007.04.005
CAS
Article
PubMed
Google Scholar
Candela M, Consolandi C, Severgnini M et al (2010) High taxonomic level fingerprint of the human intestinal microbiota by Ligase Detection Reaction—Universal Array approach. BMC Microbiol 10:116. https://doi.org/10.1186/1471-2180-10-116
CAS
Article
PubMed
PubMed Central
Google Scholar
Palmer C, Bik EM, Eisen MB et al (2006) Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 34:e5–e5. https://doi.org/10.1093/nar/gnj007
CAS
Article
PubMed
PubMed Central
Google Scholar
Dewulf EM, Cani PD, Claus SP et al (2013) Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:1112–1121. https://doi.org/10.1136/gutjnl-2012-303304
CAS
Article
PubMed
Google Scholar
Bennet SMP, Böhn L, Störsrud S et al (2018) Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut 67:872–881. https://doi.org/10.1136/gutjnl-2016-313128
CAS
Article
PubMed
Google Scholar
Quince C, Walker AW, Simpson JT et al (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833. https://doi.org/10.1038/nbt.3935
CAS
Article
PubMed
Google Scholar
Consortium THMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207. https://doi.org/10.1038/nature11234
CAS
Article
Google Scholar
Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047. https://doi.org/10.1111/1574-6976.12075
CAS
Article
PubMed
Google Scholar
Zeevi D, Korem T, Zmora N et al (2015) Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1094. https://doi.org/10.1016/j.cell.2015.11.001
CAS
Article
PubMed
Google Scholar
Brahe LK, Le Chatelier E, Prifti E et al (2015) Dietary modulation of the gut microbiota–a randomised controlled trial in obese postmenopausal women. Br J Nutr 114:406–417. https://doi.org/10.1017/S0007114515001786
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao L, Zhang F, Ding X et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–1156. https://doi.org/10.1126/science.aao5774
CAS
Article
PubMed
Google Scholar
Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46–R46. https://doi.org/10.1186/gb-2014-15-3-r46
Article
PubMed
PubMed Central
Google Scholar
Truong DT, Franzosa EA, Tickle TL et al (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902. https://doi.org/10.1038/nmeth.3589
CAS
Article
PubMed
Google Scholar
Franzosa EA, McIver LJ, Rahnavard G et al (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 15:962–968. https://doi.org/10.1038/s41592-018-0176-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Pasolli E, Asnicar F, Manara S et al (2019) Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176:649–662.e20. https://doi.org/10.1016/j.cell.2019.01.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Zou Y, Xue W, Luo G et al (2019) 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 37:179–185. https://doi.org/10.1038/s41587-018-0008-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Goodrich JK, Di Rienzi SC, Poole AC et al (2014) Conducting a microbiome study. Cell 158:250–262. https://doi.org/10.1016/j.cell.2014.06.037
CAS
Article
PubMed
PubMed Central
Google Scholar
Knight R, Vrbanac A, Taylor BC et al (2018) Best practices for analysing microbiomes. Nat Rev Microbiol 16:410–422. https://doi.org/10.1038/s41579-018-0029-9
CAS
Article
PubMed
Google Scholar
Claesson MJ, Clooney AG, O’Toole PW (2017) A clinician's guide to microbiome analysis. Nat Rev Gastroenterol Amp Hepatol 14:585. https://doi.org/10.1038/nrgastro.2017.97
Article
Google Scholar
Debelius J, Song SJ, Vazquez-Baeza Y et al (2016) Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol 17:217. https://doi.org/10.1186/s13059-016-1086-x
Article
PubMed
PubMed Central
Google Scholar
Costea PI, Zeller G, Sunagawa S et al (2017) Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 35:1069. https://doi.org/10.1038/nbt.3960
CAS
Article
PubMed
Google Scholar
Sinha R, Abu-Ali G, Vogtmann E et al (2017) Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (MBQC) project consortium. Nat Biotechnol 35:1077
CAS
Article
PubMed
PubMed Central
Google Scholar
Washburne AD, Morton JT, Sanders J et al (2018) Methods for phylogenetic analysis of microbiome data. Nat Microbiol 3:652–661. https://doi.org/10.1038/s41564-018-0156-0
CAS
Article
PubMed
Google Scholar
Vandeputte D, Falony G, Vieira-Silva S et al (2016) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65:57–62. https://doi.org/10.1136/gutjnl-2015-309618
CAS
Article
PubMed
Google Scholar
Kaczmarek JL, Musaad SMA, Holscher HD (2017) Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr. https://doi.org/10.3945/ajcn.117.156380
Article
PubMed
Google Scholar
O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122. https://doi.org/10.1111/j.2041-210X.2010.00021.x
Article
Google Scholar
Zhang X, Mallick H, Tang Z et al (2017) Negative binomial mixed models for analyzing microbiome count data. BMC Bioinform 18:4. https://doi.org/10.1186/s12859-016-1441-7
Article
Google Scholar
Vandeputte D, Kathagen G, D’hoe K et al (2017) Quantitative microbiome profiling links gut community variation to microbial load. Nature 551:507. https://doi.org/10.1038/nature24460
CAS
Article
PubMed
Google Scholar
Jian C, Luukkonen P, Yki-Järvinen H, et al (2018) Quantitative PCR provides a simple and accessible method for quantitative microbiome profiling. bioRxiv: 478685. https://doi.org/10.1101/478685
Lappi J, Salojärvi J, Kolehmainen M et al (2013) Intake of whole-grain and fiber-rich rye bread versus refined wheat bread does not differentiate intestinal microbiota composition in finnish adults with metabolic syndrome. J Nutr 143:648–655. https://doi.org/10.3945/jn.112.172668
CAS
Article
PubMed
Google Scholar
Gu Y, Wang X, Li J et al (2017) Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 8:1785. https://doi.org/10.1038/s41467-017-01682-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Staudacher HM, Lomer MCE, Anderson JL et al (2012) Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J Nutr 142:1510–1518. https://doi.org/10.3945/jn.112.159285
CAS
Article
PubMed
Google Scholar
Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8. https://doi.org/10.1111/j.1574-6968.2009
CAS
Article
PubMed
Google Scholar
Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci 105:16731–16736. https://doi.org/10.1073/pnas.0804812105
CAS
Article
PubMed
PubMed Central
Google Scholar
Geerlings YS, Kostopoulos I, De Vos MW, Belzer C (2018) Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how? Microorg 6(3):75. https://doi.org/10.3390/microorganisms6030075
CAS
Article
Google Scholar
Derrien M, Collado MC, Ben-Amor K et al (2008) The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74:1646–1648. https://doi.org/10.1128/AEM.01226-07
CAS
Article
PubMed
Google Scholar
Collado MC, Derrien M, Isolauri E et al (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73:7767–7770. https://doi.org/10.1128/AEM.01477-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Derrien M, Belzer C, de Vos WM (2017) Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 106:171–181. https://doi.org/10.1016/j.micpath.2016.02.005
Article
PubMed
Google Scholar
Sandberg J, Kovatcheva-Datchary P, Björck I et al (2018) Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. Eur J Nutr. https://doi.org/10.1007/s00394-018-1788-9
Article
PubMed
PubMed Central
Google Scholar
Bäckhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703. https://doi.org/10.1016/j.chom.2015.04.004
CAS
Article
PubMed
Google Scholar
Nylund L, Satokari R, Nikkilä J et al (2013) Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiol 13:12. https://doi.org/10.1186/1471-2180-13-12
Article
PubMed
PubMed Central
Google Scholar
Stokholm J, Blaser MJ, Thorsen J et al (2018) Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun 9:141. https://doi.org/10.1038/s41467-017-02573-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomas AM, Manghi P, Asnicar F et al (2019) Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med 25:667–678. https://doi.org/10.1038/s41591-019-0405-7
CAS
Article
PubMed
Google Scholar
Chumpitazi BP, Cope JL, Hollister EB et al (2015) Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment Pharmacol Ther 42:418–427. https://doi.org/10.1111/apt.13286
CAS
Article
PubMed
PubMed Central
Google Scholar
Valeur J, Småstuen MC, Knudsen T et al (2018) Exploring gut microbiota composition as an indicator of clinical response to dietary FODMAP restriction in patients with irritable bowel syndrome. Dig Dis Sci 63:429–436. https://doi.org/10.1007/s10620-017-4893-3
Article
PubMed
Google Scholar
Zierer J, Jackson MA, Kastenmüller G et al (2018) The fecal metabolome as a functional readout of the gut microbiome. Nat Genet 50:790–795. https://doi.org/10.1038/s41588-018-0135-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Trošt K, Ulaszewska MM, Stanstrup J et al (2018) Host: microbiome co-metabolic processing of dietary polyphenols—an acute, single blinded, cross-over study with different doses of apple polyphenols in healthy subjects. Food Res Int 112:108–128. https://doi.org/10.1016/j.foodres.2018.06.016
CAS
Article
PubMed
Google Scholar
Blaut M (2002) Relationship of prebiotics and food to intestinal microflora. Eur J Nutr 41:i11–i16. https://doi.org/10.1007/s00394-002-1102-7
CAS
Article
PubMed
Google Scholar
Brommage R, Binacua C, Antille S, Carrié A-L (1993) Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. J Nutr 123:2186–2194. https://doi.org/10.1093/jn/123.12.2186
CAS
Article
PubMed
Google Scholar
Davila A-M, Blachier F, Gotteland M et al (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107. https://doi.org/10.1016/j.phrs.2012.11.005
CAS
Article
PubMed
Google Scholar
Attene-Ramos MS, Nava GM, Muellner MG et al (2010) DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen 51:304–314. https://doi.org/10.1002/em.20546
CAS
Article
PubMed
Google Scholar
Figliuolo VR, dos Santos LM, Abalo A et al (2017) Sulfate-reducing bacteria stimulate gut immune responses and contribute to inflammation in experimental colitis. Life Sci 189:29–38. https://doi.org/10.1016/j.lfs.2017.09.014
CAS
Article
PubMed
Google Scholar
Frei R, Ferstl R, Konieczna P et al (2013) Histamine receptor 2 modifies dendritic cell responses to microbial ligands. J Allergy Clin Immunol 132:194–204.e12. https://doi.org/10.1016/j.jaci.2013.01.013
CAS
Article
PubMed
Google Scholar
Di Martino ML, Campilongo R, Casalino M et al (2013) Polyamines: Emerging players in bacteria–host interactions. Int J Med Microbiol 303:484–491. https://doi.org/10.1016/j.ijmm.2013.06.008
CAS
Article
PubMed
Google Scholar
Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562. https://doi.org/10.1007/s00726-006-0477-9
CAS
Article
PubMed
Google Scholar
Schaible UE, Kaufmann SHE (2005) A nutritive view on the host–pathogen interplay. Trends Microbiol 13:373–380. https://doi.org/10.1016/j.tim.2005.06.009
CAS
Article
PubMed
Google Scholar
Hussaini SH, Pereira SP, Murphy GM, Dowling RH (1995) Deoxycholic acid influences cholesterol solubilization and microcrystal nucleation time in gallbladder bile. Hepatology 22:1735–1744. https://doi.org/10.1002/hep.1840220619
CAS
Article
PubMed
Google Scholar
Mower HF, Ray RM, Shoff R et al (1979) Fecal bile acids in two Japanese populations with different colon cancer risks. Cancer Res 39:328–331
CAS
PubMed
Google Scholar
Allegretti JR, Kearney S, Li N et al (2016) Recurrent clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment Pharmacol Ther 43:1142–1153. https://doi.org/10.1111/apt.13616
CAS
Article
PubMed
PubMed Central
Google Scholar
Buffie CG, Bucci V, Stein RR et al (2014) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205. https://doi.org/10.1038/nature13828
CAS
Article
PubMed
PubMed Central
Google Scholar
Weingarden AR, Chen C, Bobr A et al (2014) Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol 306:G310–G319. https://doi.org/10.1152/ajpgi.00282.2013
CAS
Article
PubMed
Google Scholar
Chen B, Sun L, Zhang X (2017) Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J Autoimmun 83:31–42. https://doi.org/10.1016/j.jaut.2017.03.009
CAS
Article
PubMed
Google Scholar
Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273. https://doi.org/10.1126/science.1223490
CAS
Article
PubMed
PubMed Central
Google Scholar
Pascal M, Perez-Gordo M, Caballero T et al (2018) Microbiome and Allergic Diseases. Front Immunol 9:1584. https://doi.org/10.3389/fimmu.2018.01584
CAS
Article
PubMed
PubMed Central
Google Scholar
Krautkramer KA, Kreznar JH, Romano KA et al (2016) Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64:982–992. https://doi.org/10.1016/j.molcel.2016.10.025
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu W, Sun M, Chen F et al (2017) Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol 10:946–956. https://doi.org/10.1038/mi.2016.114
CAS
Article
PubMed
Google Scholar
Gadaleta RM, van Erpecum KJ, Oldenburg B et al (2011) Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60:463–472. https://doi.org/10.1136/gut.2010.212159
CAS
Article
PubMed
Google Scholar
Sellge G, Kufer TA (2015) PRR-signaling pathways: learning from microbial tactics. Semin Immunol 27:75–84. https://doi.org/10.1016/j.smim.2015.03.009
CAS
Article
PubMed
Google Scholar
Oviedo-Boyso J, Bravo-Patiño A, Baizabal-Aguirre VM (2014) Collaborative action of toll-like and NOD-like receptors as modulators of the inflammatory response to pathogenic bacteria. Med Inflamm 2014:432785. https://doi.org/10.1155/2014/432785
CAS
Article
Google Scholar
Zeng MY, Inohara N, Nuñez G (2017) Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10:18–26. https://doi.org/10.1038/mi.2016.75
CAS
Article
PubMed
Google Scholar
Stroncek DF, Butterfield LH, Cannarile MA et al (2017) Systematic evaluation of immune regulation and modulation. J Immunother Cancer 5:21. https://doi.org/10.1186/s40425-017-0223-8
Article
PubMed
PubMed Central
Google Scholar
Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147
CAS
Article
PubMed
Google Scholar
Milajerdi A, Mousavi SM, Sadeghi A et al (2019) The effect of probiotics on inflammatory biomarkers: a meta-analysis of randomized clinical trials. Eur J Nutr. https://doi.org/10.1007/s00394-019-01931-8
Article
PubMed
Google Scholar
Qu H, Zhang Y, Chai H et al (2019) Effects of microbiota-driven therapy on inflammatory responses in elderly individuals: a systematic review and meta-analysis. PLoS ONE 14:e0211233–e0211233. https://doi.org/10.1371/journal.pone.0211233
CAS
Article
PubMed
PubMed Central
Google Scholar
Bennet SMP, Polster A, Törnblom H et al (2016) Global cytokine profiles and association with clinical characteristics in patients with irritable bowel syndrome. Am J Gastroenterol. https://doi.org/10.1038/ajg.2016.223
Article
PubMed
Google Scholar
Coburn LA, Horst SN, Chaturvedi R et al (2013) High-throughput multi-analyte Luminex profiling implicates eotaxin-1 in ulcerative colitis. PLoS ONE 8:e82300–e82300. https://doi.org/10.1371/journal.pone.0082300
CAS
Article
PubMed
PubMed Central
Google Scholar
Rosen MJ, Karns R, Vallance JE et al (2017) Mucosal expression of type 2 and type 17 immune response genes distinguishes ulcerative colitis from colon-only crohn’s disease in treatment-naive pediatric patients. Gastroenterology 152:1345–1357.e7. https://doi.org/10.1053/j.gastro.2017.01.016
CAS
Article
PubMed
Google Scholar
Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR s. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797
CAS
Article
PubMed
Google Scholar
Ringel Y, Maharshak N, Ringel-Kulka T et al (2015) High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Gut Microbes 6:173–181. https://doi.org/10.1080/19490976.2015.1044711
CAS
Article
PubMed
PubMed Central
Google Scholar
Li G, Yang M, Zhou K et al (2015) Diversity of duodenal and rectal microbiota in biopsy tissues and luminal contents in healthy volunteers. J Microbiol Biotechnol 25:1136–1145. https://doi.org/10.4014/jmb.1412.12047
CAS
Article
PubMed
Google Scholar
Zoetendal EG, von Wright A, Vilpponen-Salmela T et al (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407. https://doi.org/10.1128/aem.68.7.3401-3407.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Shobar RM, Velineni S, Keshavarzian A et al (2016) The effects of bowel preparation on microbiota-related metrics differ in health and in inflammatory bowel disease and for the mucosal and luminal microbiota compartments. Clin Transl Gastroenterol 7:e143–e143. https://doi.org/10.1038/ctg.2015.54
CAS
Article
PubMed
PubMed Central
Google Scholar
Jalanka J, Salonen A, Salojärvi J et al (2015) Effects of bowel cleansing on the intestinal microbiota. Gut 64:1562–1568. https://doi.org/10.1136/gutjnl-2014-307240
Article
PubMed
Google Scholar
Harrell L, Wang Y, Antonopoulos D et al (2012) Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS ONE 7:e32545–e32545. https://doi.org/10.1371/journal.pone.0032545
CAS
Article
PubMed
PubMed Central
Google Scholar
Brown SR, Ali MS, Williams M et al (2015) Cellular changes of the colon after mechanical bowel preparation. J Surg Res 193:619–625. https://doi.org/10.1016/j.jss.2014.08.035
Article
PubMed
Google Scholar
Bucher P, Gervaz P, Egger J-F et al (2006) Morphologic alterations associated with mechanical bowel preparation before elective colorectal surgery: a randomized trial. Dis Colon Rectum 49:109–112. https://doi.org/10.1007/s10350-005-0215-5
Article
PubMed
Google Scholar
Choo JM, Leong LEX, Rogers GB (2015) Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep 5:16350. https://doi.org/10.1038/srep16350
CAS
Article
PubMed
PubMed Central
Google Scholar
Shabihkhani M, Lucey GM, Wei B et al (2014) The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. Clin Biochem 47:258–266. https://doi.org/10.1016/j.clinbiochem.2014.01.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Biancotto A, Feng X, Langweiler M et al (2012) Effect of anticoagulants on multiplexed measurement of cytokine/chemokines in healthy subjects. Cytokine 60:438–446. https://doi.org/10.1016/j.cyto.2012.05.019
CAS
Article
PubMed
PubMed Central
Google Scholar
Elliott P, Biobank on behalf of UK, Peakman TC, Biobank on behalf of UK (2008) The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol 37:234–244. https://doi.org/10.1093/ije/dym276
Article
PubMed
Google Scholar
Bull M, Lee D, Stucky J et al (2007) Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J Immunol Methods 322:57–69. https://doi.org/10.1016/j.jim.2007.02.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Bischoff SC (2011) “Gut health”: a new objective in medicine? BMC Med 9:24. https://doi.org/10.1186/1741-7015-9-24
Article
PubMed
PubMed Central
Google Scholar
Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. OJ L 31, 1.2.2002, pp 1–24. http://data.europa.eu/eli/reg/2002/178/oj
Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. OJ L 304, 22.11.2011, pp 18–63. http://data.europa.eu/eli/reg/2011/1169/oj
Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. OJ L 311, 28.11.2001, pp 67– 128. http://data.europa.eu/eli/dir/2001/83/oj
Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. OJ L 327, 11.12.2015, pp 1– 22. http://data.europa.eu/eli/reg/2015/2283/oj
World Medical Association (2013) World medical association Declaration of Helsinki: Ethical principles for medical research involving human subjectsworld medical association declaration of Helsinki special communication. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053
CAS
Article
Google Scholar
Directive 2001/20/EC of the European Parliament and of the Council of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use. OJ L 121, 1.5.2001, p 34. https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-1/dir_2001_20/dir_2001_20_en.pdf
Regulation (EU) No 536/2014 of the European Parliament and of the Council of 16 April 2014 on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC. https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-1/reg_2014_536/reg_2014_536_en.pdf
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). OJ L 119, 4.5.2016, pp 1–88. http://data.europa.eu/eli/reg/2016/679/oj
Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. OJ L 404, 30.12.2006, pp 9– 25. http://data.europa.eu/eli/reg/2006/1924/oj
Commission Delegated Regulation (EU) 2016/127 of 25 September 2015 supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as regards the specific compositional and information requirements for infant formula and follow-on formula and as regards requirements on information relating to infant and young child feeding. OJ L 25, 2.2.2016, pp 1–29. http://data.europa.eu/eli/reg_del/2016/127/oj5
Martínez SV, Siani A (2017) Health claims made on food in the EU: the edge between scientific knowledge and regulatory requirements. Trends Food Sci Technol 69:315–323. https://doi.org/10.1016/j.tifs.2017.01.005
CAS
Article
Google Scholar
Binnendijk KH, Rijkers GT (2013) What is a health benefit? An evaluation of EFSA opinions on health benefits with reference to probiotics. Benef Microbes 4:223–230. https://doi.org/10.3920/BM2013.0019
CAS
Article
PubMed
Google Scholar
Guidance to compliance with Regulation (EC) 1924/2006 on nutrition and health claims made on foods Version 2, November 2011. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/204320/Nutrition_and_health_claims_guidance_November_2011.pdf
Ministero della Salute (2018) DIREZIONE GENERALE PER L’IGIENE E LA SICUREZZA DEGLI ALIMENTI E LA NUTRIZIONE - UFFICIO 4 LINEE GUIDA SU PROBIOTICI E PREBIOTICI. Revisione marzo 2018. http://www.salute.gov.it/imgs/C_17_pubblicazioni_1016_allegato.pdf